11 research outputs found

    Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host

    Get PDF
    International audienceBACKGROUND: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. METHODOLOGY/PRINCIPAL FINDINGS: The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. CONCLUSIONS/SIGNIFICANCE: Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein

    Relative substrate affinities of wild-type and mutant forms of the Escherichia coli sugar transporter GalP determined by solid-state NMR

    No full text
    Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is used for the first time to examine the relative substrate-binding affinities of mutant forms of the Escherichia coli sugar transporter GalP in membrane preparations. The SSNMR method of (13)C cross-polarization magic-angle spinning (CP-MAS) is applied to five site-specific mutants (W56F, W239F, R316W, T336Y and W434F), which have a range of different sugar-transport activities compared to the wild-type protein. It is shown that binding of the substrate D-glucose can be detected independently of sugar transport activity using SSNMR, and that the NMR peak intensities for uniformly (13)C-labelled glucose are consistent with wild-type GalP and the mutants having different affinities for the substrate. The W239F and W434F mutants showed binding affinities similar to that of the wild-type protein, whereas the affinity of glucose-binding to the W56F mutant was reduced. The R316W mutant showed no detectable binding; this position corresponds to the second basic residue in the highly conserved (R/K)XGR(R/K) motif in the major facilitator superfamily of transport proteins and to a mutation in human GLUT1 found in individuals with GLUT1-deficiency syndrome. The T336Y mutant also showed no detectable binding; this mutation is likely to have perturbed helix structure or packing to an extent that conformational changes in the protein are hindered. The effects of the mutations on substrate-binding are discussed with reference to the putative positions of the residues in a 3D homology model of GalP based on the X-ray crystal structure of the E. coli glycerol-3-phosphate transporter GlpT

    Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome

    No full text
    Phytochrome photoreceptors mediate light responses in plants and in many microorganisms. Here we report studies using 1H–13C magic-angle spinning NMR spectroscopy of the sensor module of cyanobacterial phytochrome Cph1. Two isoforms of the red-light absorbing Pr ground state are identified. Conclusive evidence that photoisomerization occurs at the C15-methine bridge leading to a β-facial disposition of the ring D is presented. In the far-red-light absorbing Pfr state, strong hydrogen-bonding interactions of the D-ring carbonyl group to Tyr-263 and of N24 to Asp-207 hold the chromophore in a tensed conformation. Signaling is triggered when Asp-207 is released from its salt bridge to Arg-472, probably inducing conformational changes in the tongue region. A second signal route is initiated by partner swapping of the B-ring propionate between Arg-254 and Arg-222

    Active membrane transport and receptor proteins from bacteria

    Get PDF
    A general strategy for the expression of bacterial membrane transport and receptor genes in Escherichia coli is described. Expression is amplified so that the encoded proteins comprise 5-35% of E. coli inner membrane protein. Depending upon their topology, proteins are produced with RGSH6 or a Strep tag at the C-terminus. These enable purification in mg quantities for crystallization and NMR studies. Examples of one nutrient uptake and one multidrug extrusion protein from Helicobacter pylori are described. This strategy is successful for membrane proteins from H. pylori, E. coli, Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Microbacterium liquefaciens, Brucella abortus, Brucella melitensis, Campylobacter jejuni, Neisseria meningitides, Streptomyces coelicolor and Rhodobacter sphaeroides

    Interactions of the intact FsrC membrane histidine kinase with its pheromone ligand GBAP revealed through synchrotron radiation circular dichroism

    Get PDF
    FsrC is the membrane-bound histidine kinase component of the Fsr two-component signal transduction system involved in quorum sensing in the hospital-acquired infection agent Enterococcus faecalis. Synchrotron radiation circular dichroism spectroscopy was used here to study the intact purified protein solubilised in detergent micelles. Conditions required for FsrC stability in detergent were firstly determined and tested by prolonged exposure of stabilised protein to far-ultraviolet radiation. Using stabilised purified protein, far-ultraviolet synchrotron radiation circular dichroism revealed that FsrC is 61% α-helical and that it is relatively thermostable, retaining at least 57% secondary structural integrity at 90 °C in the presence or absence of gelatinase biosynthesis-activating pheromone (GBAP). Whilst binding of the quorum pheromone ligand GBAP did not significantly affect FsrC secondary structure, near-ultraviolet spectra revealed that the tertiary structure in the regions of the Tyr and Trp residues was significantly affected. Titration experiments revealed a calculated k d value of 2 μM indicative of relatively loose binding of gelatinase biosynthesis-activating pheromone to FsrC. Although use of synchrotron radiation circular dichroism has been applied to membrane proteins previously, to our knowledge this is the first report of its use to determine a k d value for an intact membrane protein. Based on our findings, we suggest that synchrotron radiation circular dichroism will be a valuable technique for characterising ligand binding by other membrane sensor kinases and indeed other membrane proteins in general. It further provides a valuable screening tool for membrane protein stability under a range of detergent conditions prior to downstream structural methods such as crystallisation and NMR experiments particularly when lower detergent concentrations are used

    Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy

    Get PDF
    A great number of membrane proteins have proven difficult to crystallise for use in X-ray crystallographic structural determination or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour. In this review examples of the applications of CD and synchrotron radiation CD (SRCD) to membrane protein ligand binding interaction studies are discussed. The availability of SRCD has been an important advancement in recent progress, most particularly because it can be used to extend the spectral region in the far-UV region (important for increasing the accuracy of secondary structure estimations) and for working with membrane proteins available in only small quantities for which SRCD has facilitated molecular recognition studies. Such studies have been accomplished by probing in the near-UV region the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells of small volume capacity. In particular, this review describes the most recent use of the technique in the following areas: to obtain quantitative data on ligand binding (exemplified by the FsrC membrane sensor kinase receptor); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by secretory phospholipase A2); and to identify suitable detergent conditions to observe membrane protein–ligand interactions using stabilised proteins (exemplified by the antiseptic transporter SugE). Finally, the importance of characterising in solution the conformational behaviour and ligand binding properties of proteins in both far- and near-UV regions is discussed. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein–ligand binding
    corecore