107 research outputs found

    Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari

    Get PDF
    We evaluate the operational MODIS Leaf Area Index (LAI) product using field-sampled data collected at five sites in southern Africa in March 2000. One site (Mongu, Zambia) was sampled monthly throughout the year. All sites were along the International Geosphere Biosphere Programme’s (IGBP) Kalahari Transect, which features progressively lower annual precipitation, and hence, lower vegetation productivity, from north to south. The soils are consistently sandy. At each site, we sampled the vegetation overstory along three 750-m transects using the Tracing Radiation and Architecture in Canopies (TRAC) instrument. The resulting plant area index values were adjusted with ancillary stem area data to estimate LAI. Despite some instrument characterization and production issues in the first year of MODIS operations, our results suggest the first-year MODIS LAI algorithm correctly accommodates structural and phenological variability in semiarid woodlands and savannas, and is accurate to within the uncertainty of the validation approach used here. Limitations of this study and its conclusions are also discussed

    Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari

    Get PDF
    We evaluate the operational MODIS Leaf Area Index (LAI) product using field-sampled data collected at five sites in southern Africa in March 2000. One site (Mongu, Zambia) was sampled monthly throughout the year. All sites were along the International Geosphere Biosphere Programme’s (IGBP) Kalahari Transect, which features progressively lower annual precipitation, and hence, lower vegetation productivity, from north to south. The soils are consistently sandy. At each site, we sampled the vegetation overstory along three 750-m transects using the Tracing Radiation and Architecture in Canopies (TRAC) instrument. The resulting plant area index values were adjusted with ancillary stem area data to estimate LAI. Despite some instrument characterization and production issues in the first year of MODIS operations, our results suggest the first-year MODIS LAI algorithm correctly accommodates structural and phenological variability in semiarid woodlands and savannas, and is accurate to within the uncertainty of the validation approach used here. Limitations of this study and its conclusions are also discussed

    The EOS Prototype Validation Exercise (PROVE) at Jornada: Overview and Lessons Learned

    Get PDF
    The Earth Observing System (EOS) instrument teams must validate the operational products they produce from the Terra spacecraft data. As a pilot for future validation activities, four EOS teams (MODIS, MISR, ASTER, and Landsat-7) and community experts conducted an 11-day field campaign in May 1997 near Las Cruces, NM. The goals of the Prototype Validation Exercise (PROVE) included (1) gaining experience in the collection and use of field data for EOS product validation; (2) developing coordination, measurement, and data-archiving protocols; and (3) compiling a synoptic land and atmospheric data set for testing algorithms. PROVE was held at the USDA-Agricultural Research Service’s (ARS) Jornada Experimental Range, an expansive desert plateau hosting a complex mosaic of grasses and shrubs. Most macroscopic variables affecting the radiation environment were measured with ground, air-borne (including AVIRIS and laser altimeter), and space-borne sensors (including AVHRR, Landsat TM, SPOT, POLDER, and GOES). The Oak Ridge Distributed Active Archive Center (DAAC) then used campaign data sets to prototype Mercury, its Internet-based data harvesting and distribution system. This article provides general information about PROVE and assesses the progress made toward the campaign goals. Primary successes included the rapid campaign formulation and execution, measurement protocol development, and the significant collection, reduction, and sharing of data among participants. However, the PROVE data were used primarily for arid-land research and model validation rather than for validating satellite products, and the data were slow to reach the DAAC and hence public domain. The lessons learned included: (1) validation campaigns can be rapidly organized and implemented if there are focused objectives and on-site facilities and expertise; (2) data needs, organization, storage, and access issues must be addressed at the onset of campaign planning; and (3) the end-to-end data collection, release, and publication environment may need to be readdressed by program managers , funding agencies, and journal editors if rapid and comprehensive validation of operational satellite products is to occur

    Defects in the Fanconi Anemia Pathway in Head and Neck Cancer Cells Stimulate Tumor Cell Invasion through DNA-PK and Rac1 Signaling

    Get PDF
    PURPOSE: Head and neck squamous cell carcinoma (HNSCC) remains a devastating disease, and Fanconi anemia (FA) gene mutations and transcriptional repression are common. Invasive tumor behavior is associated with poor outcome, but relevant pathways triggering invasion are poorly understood. There is a significant need to improve our understanding of genetic pathways and molecular mechanisms driving advanced tumor phenotypes, to develop tailored therapies. Here we sought to investigate the phenotypic and molecular consequences of FA pathway loss in HNSCC cells. EXPERIMENTAL DESIGN: Using sporadic HNSCC cell lines with and without FA gene knockdown, we sought to characterize the phenotypic and molecular consequences of FA deficiency. FA pathway inactivation was confirmed by the detection of classic hallmarks of FA following exposure to DNA cross-linkers. Cells were subjected to RNA sequencing with qRT-PCR validation, followed by cellular adhesion and invasion assays in the presence and absence of DNA-dependent protein kinase (DNA-PK) and Rac1 inhibitors. RESULTS: We demonstrate that FA loss in HNSCC cells leads to cytoskeletal reorganization and invasive tumor cell behavior in the absence of proliferative gains. We further demonstrate that cellular invasion following FA loss is mediated, at least in part, through NHEJ-associated DNA-PK and downstream Rac1 GTPase activity. CONCLUSIONS: These findings demonstrate that FA loss stimulates HNSCC cell motility and invasion, and implicate a targetable DNA-PK/Rac1 signaling axis in advanced tumor phenotypes

    The psychology of dynamic balance and peak performance in sport: correction theory

    Get PDF
    This article introduces a new approach to understanding peak performance and dysfunctional performance in sport, correction theory. Correction theory, based within a control theory and dynamical systems perspective, assumes that dynamic balance (a state in which a robust complex system will self-correct in response to imbalance) underwrites individual functioning. The central thesis presented in this article is that an interdependent relationship exists between peak performance and dysfunctional performance in sport. Peak performance is, in part, a (corrective) response to dysfunctional performance and vice versa. An overview of correction theory is presented, based on two propositions relating to balance. Implications of correction theory for understanding sporting performance are briefly considered.N/

    Mental and perceptual feedback in the development of creative flow

    Get PDF
    Sketching is considered by artists and designers to be a vital tool in the creative process. However, research shows that externalisation during the creative process (i.e., sketching) is not necessary to create effectively. This study examines whether sketching may play a more important role in the subjective experience of creativity by facilitating the deeply focused, optimal state of consciousness termed ‘flow’ (being ‘in the zone’). The study additionally explored whether sketching affects flow by easing cognitive load or by providing a clearer sense of self-feedback. Participants carried out the creative mental synthesis task (combining sets of simple shapes into creative drawings), experimentally simulating the visual creative process. Ideas were generated either mentally before committing to a final drawing, or with external perceptual support through sketching, and cognitive load was varied by using either three- or five-shape sets. The sketching condition resulted in greater experience of flow and lower perceived task difficulty. However, cognitive load did not affect flow and there was no interaction between load and sketching conditions. These findings are the first to empirically demonstrate that sketching increases flow experience, and that this is not dependent on an associated reduction in overall working memory load

    The use of NDVI and its Derivatives for Monitoring Lake Victoria’s Water Level and Drought Conditions

    Get PDF
    Normalized Difference Vegetation Index (NDVI), which is a measure of vegetation vigour, and lake water levels respond variably to precipitation and its deficiency. For a given lake catchment, NDVI may have the ability to depict localized natural variability in water levels in response to weather patterns. This information may be used to decipher natural from unnatural variations of a given lake’s surface. This study evaluates the potential of using NDVI and its associated derivatives (VCI (vegetation condition index), SVI (standardised vegetation index), AINDVI (annually integrated NDVI), green vegetation function (F g ), and NDVIA (NDVI anomaly)) to depict Lake Victoria’s water levels. Thirty years of monthly mean water levels and a portion of the Global Inventory Modelling and Mapping Studies (GIMMS) AVHRR (Advanced Very High Resolution Radiometer) NDVI datasets were used. Their aggregate data structures and temporal co-variabilities were analysed using GIS/spatial analysis tools. Locally, NDVI was found to be more sensitive to drought (i.e., responded more strongly to reduced precipitation) than to water levels. It showed a good ability to depict water levels one-month in advance, especially in moderate to low precipitation years. SVI and SWL (standardized water levels) used in association with AINDVI and AMWLA (annual mean water levels anomaly) readily identified high precipitation years, which are also when NDVI has a low ability to depict water levels. NDVI also appears to be able to highlight unnatural variations in water levels. We propose an iterative approach for the better use of NDVI, which may be useful in developing an early warning mechanisms for the management of lake Victoria and other Lakes with similar characteristics

    On the conceptualization and measurement of flow

    Get PDF
    This chapter introduces in chronological order the three main measurement methods – the Flow Questionnaire, the Experience Sampling Method, and the standardized scales of the componential approach – that researchers developed and used in conducting research on the flow state. Each measurement method and underlying conceptualization is explained, and its strengths and limitations are then discussed in relation to the other measurement methods and associated conceptualizations. The analysis reveals that, although the concept of flow remained stable since its inception, the models of flow that researchers developed in conjunction with the measurement methods changed substantially over time. Moreover, the findings obtained by applying the various measurement methods led to corroborations and disconfirmations of the underlying models, and hence provided indications on how to interpret and possibly modify flow theory. The chapter then analyzes the emerging process approach, which conceptualizes and measures flow as a dynamic path rather than an object, and highlights its potential for integrating flow and creativity within the same conceptual framework. The final section outlines new directions for developing more valid and useful measurement methods that can help to advance the understanding of flow, its antecedents, and its consequences

    Internet of Things for Environmental Sustainability and Climate Change

    Get PDF
    Our world is vulnerable to climate change risks such as glacier retreat, rising temperatures, more variable and intense weather events (e.g., floods, droughts, and frosts), deteriorating mountain ecosystems, soil degradation, and increasing water scarcity. However, there are big gaps in our understanding of changes in regional climate and how these changes will impact human and natural systems, making it difficult to anticipate, plan, and adapt to the coming changes. The IoT paradigm in this area can enhance our understanding of regional climate by using technology solutions, while providing the dynamic climate elements based on integrated environmental sensing and communications that is necessary to support climate change impacts assessments in each of the related areas (e.g., environmental quality and monitoring, sustainable energy, agricultural systems, cultural preservation, and sustainable mining). In the IoT in Environmental Sustainability and Climate Change chapter, a framework for informed creation, interpretation and use of climate change projections and for continued innovations in climate and environmental science driven by key societal and economic stakeholders is presented. In addition, the IoT cyberinfrastructure to support the development of continued innovations in climate and environmental science is discussed
    • 

    corecore