789 research outputs found

    Guidelines for measuring and reporting environmental parameters for experiments in greenhouses

    Get PDF
    Background: The importance of appropriate, accurate measurement and reporting of environmental parameters in plant sciences is a significant aspect of quality assurance for all researchers and their research. There is a clear need for ensuring research across the world can be compared, understood and where necessary replicated by fellow researchers. A common set of guidelines to educate, assist and encourage comparativeness is of great importance. On the other hand, the level of effort and attention to detail by an individual researcher should be commensurate with the particular research being conducted. For example, a researcher focusing on interactions of light and temperature should measure all relevant parameters and report a measurement summary that includes sufficient detail allowing for replication. Such detail may be less relevant when the impact of environmental parameters on plant growth and development is not the main research focus. However, it should be noted that the environmental experience of a plant during production can have significant impact when subsequent experiments investigate plants at a molecular, biochemical or genetic level or where species interactions are considered. Thus, researchers are encouraged to make a critical assessment of what parameters are of primary importance in their research and these parameters should be measured and reported. Content: This paper brings together a collection of parameters that the authors, as members of International Committee on Controlled Environment Guidelines (ICCEG) in consultation with members of our three parent organizations, believe constitute those which should be recorded and reported when publishing scientific data from experiments in greenhouses. It provides recommendations to end users on when, how and where these parameters should be measured along with the appropriate internationally standardized units that should be used

    How are nitrogen availability, fine-root mass, and nitrogen uptake related empirically? Implications for models and theory

    Get PDF
    We gratefully acknowledge funding from Loyola University Chicago; suggestions for improvement by David Robinson and anonymous peer reviewers; logistical support from K. Erickson; help with maintenance and harvests from O. Urbanski, L. Papaioannou, H. Roudebush, & V. Roudebush; and tissue and substrate analyses from Z. Zhu. The authors have no conflicts of interest to report.Peer reviewedPostprin

    The Belgian PCB and dioxin incident of January-June 1999: exposure data and potential impact on health.

    Get PDF
    In January 1999, 500 tons of feed contaminated with approximately 50 kg of polychlorinated biphenyls (PCBs) and 1 g of dioxins were distributed to animal farms in Belgium, and to a lesser extent in the Netherlands, France, and Germany. This study was based on 20,491 samples collected in the database of the Belgian federal ministries from animal feed, cattle, pork, poultry, eggs, milk, and various fat-containing food items analyzed for their PCB and/or dioxin content. Dioxin measurements showed a clear predominance of polychlorinated dibenzofuran over polychlorinated dibenzodioxin congeners, a dioxin/PCB ratio of approximately 1:50,000 and a PCB fingerprint resembling that of an Aroclor mixture, thus confirming contamination by transformer oil rather than by other environmental sources. In this case the PCBs contribute significantly more to toxic equivalents (TEQ) than dioxins. The respective means +/- SDs and the maximum concentrations of dioxin (expressed in TEQ) and PCB observed per gram of fat in contaminated food were 170.3 +/- 487.7 pg, 2613.4 pg, 240.7 +/- 2036.9 ng, and 51059.0 ng in chicken; 1.9 +/- 0.8 pg, 4.3 pg, 34.2 +/- 30.5 ng, and 314.0 ng in milk; and 32.0 +/- 104.4 pg, 713.3 pg, 392.7 +/- 2883.5 ng, and 46000.0 ng in eggs. Assuming that as a consequence of this incident between 10 and 15 kg PCBs and from 200 to 300 mg dioxins were ingested by 10 million Belgians, the mean intake per kilogram of body weight is calculated to maximally 25,000 ng PCBs and 500 pg international TEQ dioxins. Estimates of the total number of cancers resulting from this incident range between 40 and 8,000. Neurotoxic and behavioral effects in neonates are also to be expected but cannot be quantified. Because food items differed widely (more than 50-fold) in the ratio of PCBs to dioxins, other significant sources of contamination and a high background contamination are likely to contribute substantially to the exposure of the Belgian population

    Root phenotyping pipeline for cereal plants

    Get PDF
    The proposed system for the phenotypic analysis of root traits that is presented here enables the precise description of the root growth kinetics of cereal plants. The designed pipeline is composed of a drip irrigation system to supplement plants with a medium, a high-resolution root system scanning facility and a method for comprehensive image analysis. The system enables low-effort, accurate and highly repeatable analysis of features of the root system of cereal seedlings and young plants until the early tillering stage. This system employs an automatic drip irrigation line, which is controlled remotely by a programmable logic controller (PLC). The PLC adapter used facilitates the automated control of all system modules, thus allowing the rate of the medium flow to be adjusted for the supplementation of plants. The system employs measuring sensors for the continuous monitoring of the parameters of the culture medium. This continuous sensing of medium parameters can be applicable for mineral nutrition studies and abiotic stress response testing. The installed drip lines are injected into transparent acrylic tubes (500 mm high, 32/30 mm in outer and inner diameter, with a circular opening in the bottom of 3 mm in diameter) that are filled with glass beads. The acrylic tubes are placed in opaque cover tubes that permit the non-destructive observation of the growth of the root system. Enhanced imaging quality contributes to an increase in the precision of the results that are obtained in the course of the analysis of root parameters using specialised root scanners coupled with the WinRHIZO system. This novel phenotyping pipeline permits noninvasive observation of root system growth adjusted for the subsequent root image acquisition with a reduced background noise. The method combines automated control of plant growth conditions with good imaging quality and high replicability of growth parameters

    Long-term outcomes of slipped capital femoral epiphysis treated with in situ pinning

    Get PDF
    PURPOSE: Slipped capital femoral epiphysis (SCFE) is the commonest hip disorder in adolescents. In situ pinning is commonly performed, yet lately there has been an increase in procedures with open reduction and internal fixation. These procedures, however, are technically demanding with relatively high complication rates and unknown long-term outcomes. Nevertheless, reports on long-term results of in situ fixation are not equivocal. This study evaluates the possible higher risk of worse outcome after in situ pinning of SCFE. METHODS: All patients treated for SCFE with in situ fixation between 1980 and 2002 in four different hospitals were asked to participate. Patients were divided into three groups, based on severity of the slip. Patients were invited to the outpatient clinic for physical examination and X-rays, and to fill out the questionnaires HOOS, EQ5D, and SF36. ANOVA and chi-squared tests were used to analyze differences between groups. RESULTS: Sixty-one patients with 78 slips filled out the questionnaires. Patients with severe slips had worse scores on HOOS, EQ5D, and SF36. 75 % of patients with severe slips had severe osteoarthritis, compared to 2 % of mild and 11 % of moderate slips. CONCLUSION: Hips with mild and moderate SCFE generally had good functional and radiological outcome at a mean follow-up of 18 years, and for these hips there seems to be no indication for open procedures. However, severe slips have a significantly worse outcome, and open reduction and internal fixation could therefore be considered

    Re-irradiation of a second localization of idiopathic midline destructive disease in the head and neck area

    Get PDF
    Idiopathic midline destructive disease is a rare disease, characterized by a progressive ulceration and destruction of midline facial structures. We report a case with localization on the palate for which she received radiotherapy. Later she developed a second localization on the posterior pharyngeal wall for which she was re-irradiated, without severe sequels. Twice a complete regression was observed

    Vegetation dynamics and plant constraints: separating generalities and specifics

    Get PDF
    Vegetation dynamics is a stochastic process of species replacement after disturbance. It occurs because individual species are limited by general constraints and trade-offs. As these constraints and trade-offs are becoming better known, we understand more about the relationships between disturbance dynamics, species pools, and vegetation dynamics. This paper provides a summary of recent work on plant scaling and ecological trade-offs, and explores its implications for vegetation dynamics. Those aspects of succession that are predictable . given the local species complement . can be understood as consequences of these general patterns and constraints. Several are explored in this paper. The inherently stochastic nature of the process derives from the disturbance dynamics that forces it, from the sampling processes that are responsible for selecting potential invaders, and from the chance processes involved in species interactions. The dynamics of species that invade established communities is the least understood but potentially the most crucial aspect of vegetation dynamics. The relation of community invasion to gap creation and to scaling constraints is briefly discussed

    Ecological and socioeconomic impacts of invasive alien species in island ecosystems

    Get PDF
    Minimizing the impact of invasive alien species (IAS) on islands and elsewhere requires researchers to provide cogent information on the environmental and socioeconomic consequences of IAS to the public and policy makers. Unfortunately, this information has not been readily available owing to a paucity of scientific research and the failure of the scientific community to make their findings readily available to decision makers. This review explores the vulnerability of islands to biological invasion, reports on environmental and socioeconomic impacts of IAS on islands and provides guidance and information on technical resources that can help minimize the effects of IAS in island ecosystems. This assessment is intended to provide a holistic perspective on island-IAS dynamics, enable biologists and social scientists to identify information gaps that warrant further research and serve as a primer for policy makers seeking to minimize the impact of IAS on island systems. Case studies have been selected to reflect the most scientifically-reliable information on the impacts of IAS on islands. Sufficient evidence has emerged to conclude that IAS are the most significant drivers of population declines and species extinctions in island ecosystems worldwide. Clearly, IAS can also have significant socioeconomic impacts directly (for example human health) and indirectly through their effects on ecosystem goods and services.These impacts are manifest at all ecological levels and affect the poorest, as well as richest, island nations. The measures needed to prevent and minimize the impacts of IAS on island ecosystems are generally known. However, many island nations and territories lack the scientific and technical information, infrastructure and human and financial resources necessary to adequately address the problems caused by IAS. Because every nation is an exporter and importer of goods and services, every nation is also a facilitator and victim of the invasion of alien species.Wealthy nations therefore need to help raise the capacity of island nations and territories to minimize the spread and impact of IAS
    corecore