190 research outputs found
Up-regulation of NMDA receptor subunit and post-synaptic density protein expression in the thalamus of elderly patients with schizophrenia
Numerous studies have described structural and functional abnormalities of the thalamus in schizophrenia, but surprisingly few studies have examined neurochemical abnormalities that accompany these pathological changes. We previously identified abnormalities of multiple molecules associated with glutamatergic neurotransmission, including changes in NMDA receptor subunit transcripts and binding sites and NMDA receptor-associated post-synaptic density (PSD) protein transcripts in the thalamus of elderly patients with schizophrenia. In the present study, we performed western blot analysis to determine whether protein levels of NMDA receptor subunits (NR1, NR2A, NR2B) and associated PSD proteins (NF-L, PSD95, SAP102) are altered in schizophrenia. Thalamic tissue from each subject was grossly dissected into two regions: a dorsomedial region containing limbic-associated dorsomedial, anterior and central medial thalamic nuclei; and a ventral thalamus region that primarily consisted of the ventral lateral nucleus. We observed increased protein expression of the NR2B NMDA receptor subunit and its associated intracellular protein, PSD95, in the dorsomedial thalamus of patients with schizophrenia, but the other molecules were unchanged, and we found no changes in the ventral thalamus. These data provide additional evidence of thalamic neurochemical abnormalities, particularly in thalamic nuclei which project to limbic regions of the brain. Further, these findings provide additional evidence of NMDA receptor alterations in schizophrenia, which may play an important role in the neurobiology of the illness.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65970/1/j.1471-4159.2006.03954.x.pd
Differential Regulation of the Variations Induced by Environmental Richness in Adult Neurogenesis as a Function of Time: A Dual Birthdating Analysis
Adult hippocampal neurogenesis (AHN) augments after environmental enrichment (EE) and it has been related to some of the anxiolytic, antidepressant and neuroprotective effects of EE. Indeed, it has been suggested that EE specifically modulates hippocampal neurogenic cell populations over the course of time. Here we have used dual-birthdating to study two subpopulations of newborn neuron in mice (Mus musculus): those born at the beginning and at the end of enrichment. In this way, we demonstrate that while short-term cell survival is upregulated after an initial 1 week period of enrichment in 2 month old female mice, after long-term enrichment (2 months) neither cell proliferation nor the survival of the younger newly born cell populations are distinguishable from that observed in non-enriched control mice. In addition, we show that the survival of older newborn neurons alone (i.e. those born at the beginning of the enrichment) is higher than in controls, due to the significantly lower levels of cell death. Indeed, these parameters are rapidly adjusted to the sudden cessation of the EE conditions. These findings suggest both an early selective, long-lasting effect of EE on the neurons born in the initial stages of enrichment, and a quick response when the environment again becomes impoverished. Therefore, EE induces differential effects on distinct subpopulations of newborn neurons depending on the age of the immature cells and on the duration of the EE itself. The interaction of these two parameters constitutes a new, specific regulation of these neurogenic populations that might account for the long-term enrichment's behavioral effects
Anatomical Global Spatial Normalization
Anatomical global spatial normalization (aGSN) is presented as a method to scale high-resolution brain images to control for variability in brain size without altering the mean size of other brain structures. Two types of mean preserving scaling methods were investigated, “shape preserving” and “shape standardizing”. aGSN was tested by examining 56 brain structures from an adult brain atlas of 40 individuals (LPBA40) before and after normalization, with detailed analyses of cerebral hemispheres, all gyri collectively, cerebellum, brainstem, and left and right caudate, putamen, and hippocampus. Mean sizes of brain structures as measured by volume, distance, and area were preserved and variance reduced for both types of scale factors. An interesting finding was that scale factors derived from each of the ten brain structures were also mean preserving. However, variance was best reduced using whole brain hemispheres as the reference structure, and this reduction was related to its high average correlation with other brain structures. The fractional reduction in variance of structure volumes was directly related to ρ2, the square of the reference-to-structure correlation coefficient. The average reduction in variance in volumes by aGSN with whole brain hemispheres as the reference structure was approximately 32%. An analytical method was provided to directly convert between conventional and aGSN scale factors to support adaptation of aGSN to popular spatial normalization software packages
Activation of mGlu3 Receptors Stimulates the Production of GDNF in Striatal Neurons
Metabotropic glutamate (mGlu) receptors have been considered potential targets
for the therapy of experimental parkinsonism. One hypothetical advantage
associated with the use of mGlu receptor ligands is the lack of the adverse
effects typically induced by ionotropic glutamate receptor antagonists, such as
sedation, ataxia, and severe learning impairment. Low doses of the mGlu2/3
metabotropic glutamate receptor agonist, LY379268 (0.25–3 mg/kg, i.p.)
increased glial cell line-derived neurotrophic factor (GDNF) mRNA and protein
levels in the mouse brain, as assessed by in situ
hybridization, real-time PCR, immunoblotting, and immunohistochemistry. This
increase was prominent in the striatum, but was also observed in the cerebral
cortex. GDNF mRNA levels peaked at 3 h and declined afterwards, whereas GDNF
protein levels progressively increased from 24 to 72 h following LY379268
injection. The action of LY379268 was abrogated by the mGlu2/3 receptor
antagonist, LY341495 (1 mg/kg, i.p.), and was lost in mGlu3 receptor knockout
mice, but not in mGlu2 receptor knockout mice. In pure cultures of striatal
neurons, the increase in GDNF induced by LY379268 required the activation of the
mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways, as
shown by the use of specific inhibitors of the two pathways. Both in
vivo and in vitro studies led to the conclusion
that neurons were the only source of GDNF in response to mGlu3 receptor
activation. Remarkably, acute or repeated injections of LY379268 at doses that
enhanced striatal GDNF levels (0.25 or 3 mg/kg, i.p.) were highly protective
against nigro-striatal damage induced by
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice, as assessed by
stereological counting of tyrosine hydroxylase-positive neurons in the pars
compacta of the substantia nigra. We speculate that selective mGlu3 receptor
agonists or enhancers are potential candidates as neuroprotective agents in
Parkinson's disease, and their use might circumvent the limitations
associated with the administration of exogenous GDNF
Motion processing with wide-field neurons in the retino-tecto-rotundal pathway
The retino-tecto-rotundal pathway is the main visual pathway in non-mammalian vertebrates and has been found to be highly involved in visual processing. Despite the extensive receptive fields of tectal and rotundal wide-field neurons, pattern discrimination tasks suggest a system with high spatial resolution. In this paper, we address the problem of how global processing performed by motion-sensitive wide-field neurons can be brought into agreement with the concept of a local analysis of visual stimuli. As a solution to this problem, we propose a firing-rate model of the retino-tecto-rotundal pathway which describes how spatiotemporal information can be organized and retained by tectal and rotundal wide-field neurons while processing Fourier-based motion in absence of periodic receptive-field structures. The model incorporates anatomical and electrophysiological experimental data on tectal and rotundal neurons, and the basic response characteristics of tectal and rotundal neurons to moving stimuli are captured by the model cells. We show that local velocity estimates may be derived from rotundal-cell responses via superposition in a subsequent processing step. Experimentally testable predictions which are both specific and characteristic to the model are provided. Thus, a conclusive explanation can be given of how the retino-tecto-rotundal pathway enables the animal to detect and localize moving objects or to estimate its self-motion parameters
Gene Expression Analysis Implicates a Death Receptor Pathway in Schizophrenia Pathology
An increase in apoptotic events may underlie neuropathology in schizophrenia. By data-mining approaches, we identified significant expression changes in death receptor signaling pathways in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia, particularly implicating the Tumor Necrosis Factor Superfamily member 6 (FAS) receptor and the Tumor Necrosis Factor [ligand] Superfamily member 13 (TNFSF13) in schizophrenia. We sought to confirm and replicate in an independent tissue collection the noted mRNA changes with quantitative real-time RT-PCR. To test for regional and diagnostic specificity, tissue from orbital frontal cortex (OFC) was examined and a bipolar disorder group included. In schizophrenia, we confirmed and replicated significantly increased expression of TNFSF13 mRNA in the DLPFC. Also, a significantly larger proportion of subjects in the schizophrenia group had elevated FAS receptor expression in the DLPFC relative to unaffected controls. These changes were not observed in the bipolar disorder group. In the OFC, there were no significant differences in TNFSF13 or FAS receptor mRNA expression. Decreases in BH3 interacting domain death agonist (BID) mRNA transcript levels were found in the schizophrenia and bipolar disorder groups affecting both the DLPFC and the OFC. We tested if TNFSF13 mRNA expression correlated with neuronal mRNAs in the DLPFC, and found significant negative correlations with interneuron markers, parvalbumin and somatostatin, and a positive correlation with PPP1R9B (spinophilin), but not DLG4 (PSD-95). The expression of TNFSF13 mRNA in DLPFC correlated negatively with tissue pH, but decreasing pH in cultured cells did not cause increased TNFSF13 mRNA nor did exogenous TNFSF13 decrease pH. We concluded that increased TNFSF13 expression may be one of several cell-death cytokine abnormalities that contribute to the observed brain pathology in schizophrenia, and while increased TNFSF13 may be associated with lower brain pH, the change is not necessarily causally related to brain pH
The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus
The maternal separation paradigm has been applied to C57BL/6J mice as an animal developmental model for understanding structural deficits leading to abnormal behaviour. A maternal separation (MS) model was used on postnatal day (PND) 9, where the pups were removed from their mother for 24 h (MS24). When the pups were 10 weeks old, the level of anxiety and fear was measured with two behavioural tests; an open field test and an elevated plus maze test. The Barnes platform maze was used to test spatial learning, and memory by using acquisition trials followed by reverse trial sessions. The MS24 mice spent more time in the open arms of the elevated plus maze compared to controls, but no other treatment differences were found in the emotional behavioural tests. However, in the reverse trial for the Barnes maze test there was a significant difference in the frequency of visits to the old goal, the number of errors made by the MS24 mice compared to controls and in total distance moved. The mice were subsequently sacrificed and the total number of neurons estimated in the hippocampus using the optical fractionator. We found a significant loss of neurons in the dentate gyrus in MS mice compared to controls. Apparently a single maternal separation can impact the number of neurons in mouse hippocampus either by a decrease of neurogenesis or as an increase in neuron apoptosis. This study is the first to assess the result of maternal separation combining behaviour and stereology
Effects of the neurogranin variant rs12807809 on thalamocortical morphology in schizophrenia
10.1371/journal.pone.0085603PLoS ONE812-POLN
Correlations between Diffusion Tensor Imaging (DTI) and Magnetic Resonance Spectroscopy (1H MRS) in schizophrenic patients and normal controls
<p>Abstract</p> <p>Background</p> <p>Evidence suggests that white matter integrity may play an underlying pathophysiological role in schizophrenia. N-acetylaspartate (NAA), as measured by Magnetic Resonance Spectroscopy (MRS), is a neuronal marker and is decreased in white matter lesions and regions of axonal loss. It has also been found to be reduced in the prefrontal and temporal regions in patients with schizophrenia. Diffusion Tensor Imaging (DTI) allows one to measure the orientations of axonal tracts as well as the coherence of axonal bundles. DTI is thus sensitive to demyelination and other structural abnormalities. DTI has also shown abnormalities in these regions.</p> <p>Methods</p> <p>MRS and DTI were obtained on 42 healthy subjects and 40 subjects with schizophrenia. The data was analyzed using regions of interests in the Dorso-Lateral Prefrontal white matter, Medial Temporal white matter and Occipital white matter using both imaging modalities.</p> <p>Results</p> <p>NAA was significantly reduced in the patient population in the Medial Temporal regions. DTI anisotropy indices were also reduced in the same Medial Temporal regions. NAA and DTI-anisotropy indices were also correlated in the left medial temporal region.</p> <p>Conclusion</p> <p>Our results implicate defects in the medial temporal white matter in patients with schizophrenia. Moreover, MRS and DTI are complementary modalities for the study of white matter disruptions in patients with schizophrenia.</p
- …