119 research outputs found

    Proxy Means Test (PMT) analysis of poverty in Oyo State

    Get PDF
    This study attempts an assessment of the effectiveness of the proxy means test (PMT) procedure in achieving better targeting of the poor in Oyo State, Nigeria. This is because proper identification and corresponding targeting of the poor is still a challenge in poverty analysis in Africa. The PMT method was therefore used to estimate household expenditures, corresponding poverty statuses of the households, inclusion and exclusion rates using data from the National Living Standard Survey (NLLS) for the five poverty lines considered. The PMT method gave higher percentages of the poor compared to the conventional method for all the five poverty lines. The implication of this finding is that the PMT method could indeed be used alternatively for improved targeting of the poor, especially in Oyo State.Keywords: Poverty, Proxy Means Test (PMT), Poverty lines, Oyo State, Afric

    Developing ANDI: A Novel Approach to Health Product R&D in Africa

    Get PDF
    Solomon Nwaka and colleagues discuss ANDI, the African Network for Drugs and Diagnostics Innovation, which is intended to help stimulate health research and development on the African continent

    Advancing Drug Innovation for Neglected Diseases—Criteria for Lead Progression

    Get PDF
    The current drug R&D pipeline for most neglected diseases remains weak, and unlikely to support registration of novel drug classes that meet desired target product profiles in the short term. This calls for sustained investment as well as greater emphasis in the risky upstream drug discovery. Access to technologies, resources, and strong management as well as clear compound progression criteria are factors in the successful implementation of any collaborative drug discovery effort. We discuss how some of these factors have impacted drug discovery for tropical diseases within the past four decades, and highlight new opportunities and challenges through the virtual North–South drug discovery network as well as the rationale for greater participation of institutions in developing countries in product innovation. A set of criteria designed to facilitate compound progression from screening hits to drug candidate selection is presented to guide ongoing efforts

    Activity of the antiarrhythmic drug amiodarone against Leishmania (L.) infantum: an in vitro and in vivo approach

    Get PDF
    <div><p>Abstract Background: Considering the high toxicity and limited therapies available for treating visceral leishmaniasis (VL), the drug repositioning approach represents a faster way to deliver new therapies to the market. Methods: In this study, we described for the first time the activity of a potent antiarrhythmic, amiodarone (AMD), against L. (L.)infantum and its in vitro and in vivo activity. Results: The evaluation against promastigotes has shown that amiodarone presents leishmanicidal effect against the extracellular form, with an IC50 value of 10 ÎŒM. The activity was even greater against amastigotes in comparison with promastigotes with an IC50 value of 0.5 ÎŒM. The selectivity index in relation to the intracellular form demonstrated that the antiparasitic activity was approximately 56 times higher than its toxicity to mammalian cells. Investigation of the in vivo AMD activity in the L. infantum-infected hamster model showed that 51 days after the initial infection, amiodarone was unable to reduce the parasite burden in the spleen and liver when treated for 10 consecutive days, intraperitoneally, at 50 mg/kg/day, as determined by qPCR. Although not statistically significant, AMD was able to reduce the parasite burden by 20% in the liver when treated for 10 consecutive days, orally, at 100 mg/kg/day; no reduction in the spleen was found by qPCR. Conclusions: Our findings may help further drug design studies seeking new AMD derivatives that may provide new candidates with an in vitro selectivity close to or even greater than that observed in the prototype delivering effectiveness in the experimental model of VL.</p></div

    Trypanocidal and leishmanicidal activity of six limonoids

    Get PDF
    Six limonoids [kotschyienone A and B (1, 2), 7-deacetylgedunin (3), 7-deacetyl-7-oxogedunin (4), andirobin (5) and methyl angolensate (6)] were investigated for their trypanocidal and leishmanicidal activities using bloodstream forms of Trypanosoma brucei and promastigotes of Leishmania major. Whereas all compounds showed anti-trypanosomal activity, only compounds 1–4 displayed anti-leishmanial activity. The 50% growth inhibition (GI 50) values for the trypanocidal and leishmanicidal activity of the compounds ranged between 2.5 and 14.9 ΌM. Kotschyienone A (1) was found to be the most active compound with a minimal inhibition concentration (MIC) value of 10 ΌM and GI 50 values between 2.5 and 2.9 ΌM. Only compounds 1 and 3 showed moderate cytotoxicity against HL-60 cells with MIC and GI 50 values of 100 ΌM and 31.5–46.2 ΌM, respectively. Compound 1 was also found to show activity against intracellular amastigotes of L. major with a GI 50 value of 1.5 ΌM. The results suggest that limonoids have potential as drug candidates for the development of new treatments against trypanosomiasis and leishmaniasis

    TDR Targets: a chemogenomics resource for neglected diseases

    Get PDF
    The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context

    A Kernel for Open Source Drug Discovery in Tropical Diseases

    Get PDF
    Open source drug discovery, a promising alternative avenue to conventional patent-based drug development, has so far remained elusive with few exceptions. A major stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. This paper introduces the results from a newly assembled computational pipeline for identifying protein targets for drug discovery in ten organisms that cause tropical diseases. We have also experimentally tested two promising targets for their binding to commercially available drugs, validating one and invalidating the other. The resulting kernel provides a base of drug targets and lead candidates around which an open source community can nucleate. We invite readers to donate their judgment and in silico and in vitro experiments to develop these targets to the point where drug optimization can begin

    Assay strategies for the discovery and validation of therapeutics targeting <i>Brugia pahangi</i> Hsp90

    Get PDF
    The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target
    • 

    corecore