1,854 research outputs found

    The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation

    Get PDF
    The computationally demanding nature of radiative-hydrodynamical simulations of stellar surface convection warrants an investigation of the sensitivity of the convective structure and spectral synthesis to the numerical resolution and dimension of the simulations, which is presented here. With too coarse a resolution the predicted spectral lines tend to be too narrow, reflecting insufficient Doppler broadening from the convective motions, while at the currently highest affordable resolution the line shapes have converged essentially perfectly to the observed profiles. Similar conclusions are drawn from the line asymmetries and shifts. In terms of abundances, weak FeI and FeII lines show a very small dependence (~0.02 dex) while for intermediate strong lines with significant non-thermal broadening the sensitivity increases (~0.10 dex). Problems arise when using 2D convection simulations to describe an inherent 3D phenomenon, which translates to inaccurate atmospheric velocity fields and temperature and pressure structures. In 2D the theoretical line profiles tend to be too shallow and broad compared with the 3D calculations and observations, in particular for intermediate strong lines. In terms of abundances, the 2D results are systematically about 0.1 dex lower than for the 3D case for FeI lines. Furthermore, the predicted line asymmetries and shifts are much inferior in 2D. Given these shortcomings and computing time considerations it is better to use 3D simulations of even modest resolution than high-resolution 2D simulations.Comment: Accepted for A&

    A simulation of solar convection at supergranulation scale

    Full text link
    We present here numerical simulations of surface solar convection which cover a box of 30×30×\times30\times3.2 Mm3^3 with a resolution of 315×315×\times315\times82, which is used to investigate the dynamics of scales larger than granulation. No structure resembling supergranulation is present; possibly higher Reynolds numbers (i.e. higher numerical resolution), or magnetic fields, or greater depth are necessary. The results also show interesting aspects of granular dynamics which are briefly presented, like extensive p-mode ridges in the k-ω\omega diagram and a ringlike distribution of horizontal vorticity around granules. At large scales, the horizontal velocity is much larger than the vertical velocity and the vertical motion is dominated by p-mode oscillations.Comment: Contribution to the proceedings of the workshop entitled "THEMIS and the new frontiers of solar atmosphere dynamics" (March 2001), 6 pages, to appear in Nuovo Cimento

    Channeling maps for Si ions in Si : Assessing the binary collision approximation

    Get PDF
    Simulations based on the binary collision approximation (BCA) are in principle less accurate than molecular dynamics (MD) simulations. In this work, we present a comprehensive comparison between BCA and MD for Si ions impinging on a (001)-Si surface by comparing "channeling maps", i.e., projected ranges of the ions as a function of incidence direction in a representative part of the angular space. We find quantitative differences to develop as the energy decreases below similar to 100 eV, but find qualitative agreement down to similar to 10 eV. Moreover, the quality of the BCA channeling maps depends on the implementation of the BCA, which is explained in terms of double-hits and missed collisions.Peer reviewe

    Sputtering yields exceeding 1000 by 80keV Xe irradiation of Au nanorods

    Get PDF
    Using experiments and computer simulations, we find that 80 keV Xe ion irradiation of Au nanorods can produce sputtering yields exceeding 1000, which to our knowledge are the highest yields reported for sputtering by single ions in the nuclear collision regime. This value is enhanced by more than an order of magnitude compared to the same irradiation of flat Au surfaces. Using MD simulations, we show that the very high yield can be understood as a combination of enhanced yields due to low incoming angles at the sides of the nanowire, as well as the high surface-to-volume ratio causing enhanced explosive sputtering from heat spikes. We also find, both in experiments and simulations, that channeling has a strong effect on the sputtering yield: if the incoming beam happens to be aligned with a crystal axis of the nanorod, the yield can decrease to about 100

    Numerical simulations of surface convection in a late M-dwarf

    Get PDF
    Based on detailed 2D and 3D numerical radiation-hydrodynamics (RHD) simulations of time-dependent compressible convection, we have studied the dynamics and thermal structure of the convective surface layers of a prototypical late-type M-dwarf (Teff~2800K log(g)=5.0, solar chemical composition). The RHD models predict stellar granulation qualitatively similar to the familiar solar pattern. Quantitatively, the granular cells show a convective turn-over time scale of ~100s, and a horizontal scale of 80km; the relative intensity contrast of the granular pattern amounts to 1.1%, and root-mean-square vertical velocities reach 240m/s at maximum. Deviations from radiative equilibrium in the higher, formally convectively stable atmospheric layers are found to be insignificant allowing a reliable modeling of the atmosphere with 1D standard model atmospheres. A mixing-length parameter of alpha=2.1 provides the best representation of the average thermal structure of the RHD model atmosphere while alternative values are found when fitting the asymptotic entropy encountered in deeper layers of the stellar envelope alpha=1.5, or when matching the vertical velocity field alpha=3.5. The close correspondence between RHD and standard model atmospheres implies that presently existing discrepancies between observed and predicted stellar colors in the M-dwarf regime cannot be traced back to an inadequate treatment of convection in the 1D standard models. The RHD models predict a modest extension of the convectively mixed region beyond the formal Schwarzschild stability boundary which provides hints for the distribution of dust grains in cooler (brown dwarf) atmospheres.Comment: 19 pages, 16 figures, accepted for publication in A&

    Hydrodynamical model atmospheres and 3D spectral synthesis

    Full text link
    We discuss three issues in the context of three-dimensional (3D) hydrodynamical model atmospheres for late-type stars, related to spectral line shifts, radiative transfer in metal-poor 3D models, and the solar oxygen abundance. We include a brief overview about the model construction, taking the radiation-hydrodynamics code CO5BOLD (COnservative COde for the COmputation of COmpressible COnvection in a BOx of L Dimensions with L=2,3) and the related spectral synthesis package Linfor3D as examples.Comment: 6 pages, 2 figures, to appear in the Proceedings of the ESO/Lisbon/Aveiro Workshop "Precision Spectroscopy in Astrophysics", eds. L. Pasquini, M. Romaniello, N.C. Santos, and A. Correi

    Solar Oscillations and Convection: II. Excitation of Radial Oscillations

    Full text link
    Solar p-mode oscillations are excited by the work of stochastic, non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the expression for the radial mode excitation rate derived by Nordlund and Stein (Paper I) using numerical simulations of near surface solar convection. We first apply this expression to the three radial modes of the simulation and obtain good agreement between the predicted excitation rate and the actual mode damping rates as determined from their energies and the widths of their resolved spectral profiles. We then apply this expression for the mode excitation rate to the solar modes and obtain excellent agreement with the low l damping rates determined from GOLF data. Excitation occurs close to the surface, mainly in the intergranular lanes and near the boundaries of granules (where turbulence and radiative cooling are large). The non-adiabatic pressure fluctuations near the surface are produced by small instantaneous local imbalances between the divergence of the radiative and convective fluxes near the solar surface. Below the surface, the non-adiabatic pressure fluctuations are produced primarily by turbulent pressure fluctuations (Reynolds stresses). The frequency dependence of the mode excitation is due to effects of the mode structure and the pressure fluctuation spectrum. Excitation is small at low frequencies due to mode properties -- the mode compression decreases and the mode mass increases at low frequency. Excitation is small at high frequencies due to the pressure fluctuation spectrum -- pressure fluctuations become small at high frequencies because they are due to convection which is a long time scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue). 17 pages, 27 figures, some with reduced resolution -- high resolution versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048

    Magnetohydrodynamic turbulence in warped accretion discs

    Get PDF
    Warped, precessing accretion discs appear in a range of astrophysical systems, for instance the X-ray binary Her X-1 and in the active nucleus of NGC4258. In a warped accretion disc there are horizontal pressure gradients that drive an epicyclic motion. We have studied the interaction of this epicyclic motion with the magnetohydrodynamic turbulence in numerical simulations. We find that the turbulent stress acting on the epicyclic motion is comparable in size to the stress that drives the accretion, however an important ingredient in the damping of the epicyclic motion is its parametric decay into inertial waves.Comment: to appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysics, J. C. Wheeler & H. Martel (eds.

    The response of a turbulent accretion disc to an imposed epicyclic shearing motion

    Get PDF
    We excite an epicyclic motion, whose amplitude depends on the vertical position, zz, in a simulation of a turbulent accretion disc. An epicyclic motion of this kind may be caused by a warping of the disc. By studying how the epicyclic motion decays we can obtain information about the interaction between the warp and the disc turbulence. A high amplitude epicyclic motion decays first by exciting inertial waves through a parametric instability, but its subsequent exponential damping may be reproduced by a turbulent viscosity. We estimate the effective viscosity parameter, αv\alpha_{\rm v}, pertaining to such a vertical shear. We also gain new information on the properties of the disc turbulence in general, and measure the usual viscosity parameter, αh\alpha_{\rm h}, pertaining to a horizontal (Keplerian) shear. We find that, as is often assumed in theoretical studies, αv\alpha_{\rm v} is approximately equal to αh\alpha_{\rm h} and both are much less than unity, for the field strengths achieved in our local box calculations of turbulence. In view of the smallness (0.01\sim 0.01) of αv\alpha_{\rm v} and αh\alpha_{\rm h} we conclude that for β=pgas/pmag10\beta = p_{\rm gas}/p_{\rm mag} \sim 10 the timescale for diffusion or damping of a warp is much shorter than the usual viscous timescale. Finally, we review the astrophysical implications.Comment: 12 pages, 18 figures, MNRAS accepte

    NEAR-SURFACE EFFECTS IN MODELLING OSCILLATIONS OF ETA BOO

    Full text link
    Following the report of solar-like oscillations in the G0 V star eta Boo (Kjeldsen et al. 1995, AJ 109, 1313), a first attempt to model the observed frequencies was made by Christensen-Dalsgaard et al. (1995, ApJ Letters, in press). This attempt succeeded in reproducing the observed frequency separations, although there remained a difference of about 10 microHz between observed and computed frequencies. In those models, the near-surface region of the star was treated rather crudely. Here we consider more sophisticated models that include non-local mixing-length theory, turbulent pressure and nonadiabatic oscillations.Comment: uuencoded and compressed Postscript (2 pages, including figure); To appear in Proceedings of IAU Colloquium 155, "Astrophysical Applications of Stellar Pulsation", Cape Town, South Afric
    corecore