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∗Chalmers University of Technology/Göteborg University, Department of Astronomy and
Astrophysics, S-412 96 Gothenburg, Sweden

†Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, United Kingdom
‡Department of Mathematics, University of Newcastle upon Tyne, NE1 7RU, United Kingdom,

Nordita, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
‖Theoretical Astrophysics Center, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, Denmark,

Copenhagen University Observatory, Juliane Maries Vej 30, DK-2100
¶Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824,

USA

Abstract. Warped, precessing accretion discs appear in a range of astrophysical sys-
tems, for instance the X-ray binary Her X-1 and in the active nucleus of NGC4258. In
a warped accretion disc there are horizontal pressure gradients that drive an epicyclic
motion. We have studied the interaction of this epicyclic motion with the magneto-
hydrodynamic turbulence in numerical simulations. We find that the turbulent stress
acting on the epicyclic motion is comparable in size to the stress that drives the ac-
cretion, however an important ingredient in the damping of the epicyclic motion is its
parametric decay into inertial waves.

I INTRODUCTION

Warped accretion discs have been a part of the astronomical vocabulary since
the discovery of the 35-day cycle of the X-ray binary Her X-1 [1–3]. Incidentally
Her X-1 was the first occulting X-ray pulsar for which an optical counterpart was
found as discussed by Neta Bahcall at the 6th Texas Symposium in 1972 [4]. Later
on warped accretion discs have been found in a multitude of systems. In later
years one of the most interesting examples has been the maser source in the active
galactic nucleus of NGC 4258 [5].
While the warped accretion disc offered a simple interpretation of the observa-

tions, it was not easy to describe it theoretically at the hydrodynamic level. The
problems have been both to explain the excitation mechanism of the warp and its
coherence. Pringle [6] showed that the radiation pressure from the central radiation
source may produce a warp in the outer disc, and Schandl & Meyer [7] described
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a similar mechanism in which the irradiation produces a wind, which in its turn
excites a warp.
A crucial condition for any of these mechanisms to work is that the tendency of

the disc to straighten itself must be sufficiently weak. There are two different forces
that strive to produce a flat disc. Firstly there is the usual viscous stress due to the
local turbulence, which is also driving the accretion, but in general it is insignifi-
cant compared to the hydrodynamic stress due to the epicyclic shear flow which is
driven by the warp itself [8,9]. The amplitude of the epicyclic motion is inversely
proportional to the ordinary turbulent viscosity. For that reason the hydrodynamic
stress due to the epicyclic motion will also be inversely proportional to the turbu-
lent viscosity, and the time scale for flattening the disc will be anomalously short
compared to the ordinary viscous time scale.
The warping instability therefore requires a mechanism that can damp the

epicyclic motion much more efficiently than it transports the angular momentum in
the radial direction. That would for instance be the case if the turbulent viscosity
was strongly anisotropic. The intention of this paper is to estimate how anisotropic
the turbulent viscosity is and to check whether there are any other mechanisms that
can limit the amplitude of the epicyclic motion. We describe the numerical model
that we use for these estimates in Sect. 2. There are then two ways in which
we have studied the interaction between the turbulence and the epicyclic motion.
Firstly we have studied the free decay of an epicyclic motion (Sect. 3) and secondly
we have studied the motion that results from a radial forcing (Sect. 4). We discuss
and summarize our results in Sect. 5.

II THE MATHEMATICAL MODEL

We solve the magnetohydrodynamical equations in a Keplerian shearing box
[10–12]. Our units are chosen such that H = GM = µ0 = 1, where G is the
gravitational constant, M the mass of the central object, and H is the Gaussian
scale height of the shearing box. The density distribution assuming isothermality
can then be written as ρ = ρ0e

−z2/H2

, where we put ρ0 = 1. The physical size of
the shearing box is Lx : Ly : Lz = 1 : 2π : 4, and the box is positioned such that
x and z vary between ±1

2
Lx, and ±1

2
Lz, respectively, while y goes from 0 to Ly,

and the distance of the origin to the central object, R0 = 10. This gives the orbital
period T0 = 199, and the mean internal energy e0 = 7.4 10−4. To stop the box from
heating up we add a cooling function

Q = −σcool (e− e0) , (1)

where σcool is the cooling rate, which typically corresponds to a time scale of 1.5 or-
bital periods. Our boundary conditions are (sliding) periodic in the (x-) y-direction.
In the z-direction they are impenetrable and stress-free for the velocity, and acts
as a perfect conductor with respect to the magnetic field.



FIGURE 1. The magnetic field in a meridional cut of the simulation at the beginning of the

simulation (left) and after 12.5 orbital periods (right). The toroidal field is plotted using a grey

scale and the poloidal field as vectors. Note that the toroidal field has been reversed between the

two images.

We start the simulations from a snapshot from a previous simulation in which
the magnetohydrodynamic turbulence is already fully developed. In the first set of
simulations we then add a radial velocity of the form ux = u0 sin(πz/Lz), which will
have the time evolution of an epicyclic motion. In the second set of simulations,
we do not modify the velocity field of the initial snapshot, but rather add a radial
forcing term to the equation of motion. This forcing gives an acceleration with a
harmonic time-dependence on the orbital time scale and the same z-dependence as
the velocity above.

III THE FREE DECAY OF AN EPICYCLIC MOTION

In the first set of simulations we add an epicyclic motion to the initial state of the
simulation, and then follow the decay of the epicyclic motion. These simulations
have previously been described in [13]. With a weak epicyclic motion, its maximum
Mach number is initially 0.38, it is difficult to follow the evolution of the epicyclic
motion as it is comparable in size to the turbulent velocities. When the amplitude
is increased to a Mach number of 3.3, we can distinguish two stages in the damping.
After a brief period of essentially no damping the epicyclic velocity quickly drops
by a factor of 2 to 3. This damping is followed by an extended phase of exponential
decay with a time scale of 25 orbital periods. The time scale of the exponential
decay can be translated to a Shakura-Sunyaev [14] α-parameter of 0.006, which is
within a factor of two of the values usually derived from turbulence simulations,
e.g. [10,15]. The preceding rapid damping is a new phenomenon though, which
we interpret in terms of that the epicyclic motion is decaying to inertial waves



FIGURE 2. 〈ux〉 (solid line) and 2〈uy〉 (dashed line) as functions of time at z = 1.17 (top) and

z = −0.25 (bottom).

via a parametric instability [16]. We also note that the toroidal magnetic field in
the shearing box reverses its direction during the damping of the strong epicyclic
motion (Fig. 1).

IV DRIVEN EPICYCLIC MOTION

The dynamics in a real accretion disc is significantly different from the case we
have studied above. In reality the epicyclic motion will be driven by the radial
pressure gradient that is set up by the warp. To mimic this we have carried out
a new set of simulations in which we drive the epicyclic motion by adding a time-
periodic radial force to the equation of motion.



We plot the horizontally averaged velocities 〈ux〉 and 〈uy〉 in Fig. 2. The epicyclic
motion is in this case comparable to that of Run 1b in [13]. The results are similar
in the two cases, and the epicyclic motion is difficult to distinguish at z = 1.17 due
to the effect of the turbulent stresses, while it is easily distinguishable at z = −0.29.

V CONCLUSIONS

In this paper we have studied the dynamics of an epicyclic flow in a Keplerian
shear flow. In our simulations we find two damping mechanisms for the epicyclic
motion. The turbulent stresses can damp the motion in a way which can be de-
scribed in terms of a turbulent viscosity comparable in strength to that driving the
radial angular momentum transport, but a sufficiently fast epicyclic motion can
lose significant amounts of energy by exciting inertial waves through a parametric
instability.

ACKNOWLEDGMENTS

Computer resources from the National Supercomputer Centre at Linköping Uni-
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