266 research outputs found

    Echocardiography combined with cardiopulmonary exercise testing for the prediction of outcome in idiopathic pulmonary arterial hypertension

    Get PDF
    BACKGROUND: Right ventricular (RV) function is a major determinant of exercise intolerance and outcome in idiopathic pulmonary arterial hypertension (IPAH). The aim of the study was to evaluate the incremental prognostic value of echocardiography of the RV and cardiopulmonary exercise testing (CPET) on long-term prognosis in these patients. METHODS: One hundred-thirty treatment-naïve IPAH patients were enrolled and prospectively followed. Clinical worsening (CW) was defined by a reduction in 6-minute walk distance plus an increase in functional class, or non elective hospitalization for PAH, or death. Baseline evaluation included clinical, hemodynamic, echocardiographic and CPET variables. Cox regression modeling with c-statistic and bootstrapping validation methods were done. RESULTS: During a mean period of 528 ± 304 days, 54 patients experienced CW (53%). Among demographic, clinical and hemodynamic variables at catheterization, functional class and cardiac index were independent predictors of CW (Model-1). With addition of echocardiographic and CPET variables (Model-2), peak O2 pulse (peak VO2/heart rate) and RV fractional area change (RVFAC) independently improved the power of the prognostic model (AUC: 0.81 vs 0.66, respectively; p=0.005). Patients with low RVFAC and low O2 pulse (low RVFAC + low O2 pulse) and high RVFAC+low O2 pulse showed 99.8 and 29.4 increase in the hazard ratio, respectively (relative risk -RR- of 41.1 and 25.3, respectively), compared with high RVFAC+high O2 pulse (p=0.0001). CONCLUSIONS: Echocardiography combined with CPET provides relevant clinical and prognostic information. A combination of low RVFAC and low O2 pulse identifies patients at a particularly high risk of clinical deterioration

    Right ventricular-arterial uncoupling independently predicts survival in COVID-19 ARDS

    Get PDF
    Aim: To investigate the prevalence and prognostic impact of right heart failure and right ventricular-arterial uncoupling in Corona Virus Infectious Disease 2019 (COVID-19) complicated by an Acute Respiratory Distress Syndrome (ARDS). Methods: Ninety-four consecutive patients (mean age 64 years) admitted for acute respiratory failure on COVID-19 were enrolled. Coupling of right ventricular function to the pulmonary circulation was evaluated by a comprehensive trans-thoracic echocardiography with focus on the tricuspid annular plane systolic excursion (TAPSE) to systolic pulmonary artery pressure (PASP) ratio Results: The majority of patients needed ventilatory support, which was noninvasive in 22 and invasive in 37. There were 25 deaths, all in the invasively ventilated patients. Survivors were younger (62 ± 13 vs. 68 ± 12 years, p = 0.033), less often overweight or usual smokers, had lower NT-proBNP and interleukin-6, and higher arterial partial pressure of oxygen (PaO2)/fraction of inspired O2 (FIO2) ratio (270 ± 104 vs. 117 ± 57 mmHg, p < 0.001). In the non-survivors, PASP was increased (42 ± 12 vs. 30 ± 7 mmHg, p < 0.001), while TAPSE was decreased (19 ± 4 vs. 25 ± 4 mm, p < 0.001). Accordingly, the TAPSE/PASP ratio was lower than in the survivors (0.51 ± 0.22 vs. 0.89 ± 0.29 mm/mmHg, p < 0.001). At univariate/multivariable analysis, the TAPSE/PASP (HR: 0.026; 95%CI 0.01–0.579; p: 0.019) and PaO2/FIO2 (HR: 0.988; 95%CI 0.988–0.998; p: 0.018) ratios were the only independent predictors of mortality, with ROC-determined cutoff values of 159 mmHg and 0.635 mm/mmHg, respectively. Conclusions: COVID-19 ARDS is associated with clinically relevant uncoupling of right ventricular function from the pulmonary circulation; bedside echocardiography of TAPSE/PASP adds to the prognostic relevance of PaO2/FIO2 in ARDS on COVID-19

    A Four-Way Comparison of Cardiac Function with Normobaric Normoxia, Normobaric Hypoxia, Hypobaric Hypoxia and Genuine High Altitude.

    Get PDF
    There has been considerable debate as to whether different modalities of simulated hypoxia induce similar cardiac responses.This was a prospective observational study of 14 healthy subjects aged 22-35 years. Echocardiography was performed at rest and at 15 and 120 minutes following two hours exercise under normobaric normoxia (NN) and under similar PiO2 following genuine high altitude (GHA) at 3,375m, normobaric hypoxia (NH) and hypobaric hypoxia (HH) to simulate the equivalent hypoxic stimulus to GHA.All 14 subjects completed the experiment at GHA, 11 at NN, 12 under NH, and 6 under HH. The four groups were similar in age, sex and baseline demographics. At baseline rest right ventricular (RV) systolic pressure (RVSP, p = 0.0002), pulmonary vascular resistance (p = 0.0002) and acute mountain sickness (AMS) scores were higher and the SpO2 lower (p<0.0001) among all three hypoxic groups (GHA, NH and HH) compared with NN. At both 15 minutes and 120 minutes post exercise, AMS scores, Cardiac output, septal S', lateral S', tricuspid S' and A' velocities and RVSP were higher and SpO2 lower with all forms of hypoxia compared with NN. On post-test analysis, among the three hypoxia groups, SpO2 was lower at baseline and 15 minutes post exercise with GHA (89.3±3.4% and 89.3±2.2%) and HH (89.0±3.1 and (89.8±5.0) compared with NH (92.9±1.7 and 93.6±2.5%). The RV Myocardial Performance (Tei) Index and RVSP were significantly higher with HH than NH at 15 and 120 minutes post exercise respectively and tricuspid A' was higher with GHA compared with NH at 15 minutes post exercise.GHA, NH and HH produce similar cardiac adaptations over short duration rest despite lower SpO2 levels with GHA and HH compared with NH. Notable differences emerge following exercise in SpO2, RVSP and RV cardiac function

    Short term effects of exercise training on exercise capacity and quality of life in patients with pulmonary arterial hypertension: protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in the understanding and management of pulmonary arterial hypertension have enabled earlier diagnosis and improved prognosis. However, despite best available therapy, symptoms of exertional dyspnoea and fatigue are commonly reported and result in a reduced capacity to perform daily activities and impaired quality of life. Exercise training has demonstrated efficacy in individuals with other respiratory and cardiovascular diseases. Historically, however, exercise training has not been utilised as a form of therapy in pulmonary arterial hypertension due to the perceived risk of sudden cardiac death and the theoretical possibility that exercise would lead to worsening pulmonary vascular haemodynamics and deterioration in right heart function. Now, with the advances in pharmaceutical management, determining the safety and benefits of exercise training in this population has become more relevant. Only three studies of supervised exercise training in pulmonary arterial hypertension have been published. These studies demonstrated improvements in exercise capacity and quality of life, in the absence of adverse events or clinical deterioration. However, these studies have not utilised an outpatient-based, whole body exercise training program, the most common format for exercise programs within Australia. It is uncertain whether this form of training is beneficial and capable of producing sustained benefits in exercise capacity and quality of life in this population.</p> <p>Design/Methods</p> <p>This randomised controlled trial will determine whether a 12 week, outpatient-based, supervised, whole body exercise training program, followed by a home-based exercise program, is safe and improves exercise capacity and quality of life in individuals with pulmonary arterial hypertension. This study aims to recruit 34 subjects who will be randomly allocated to the exercise group (supervised exercise training 3 times a week for 12 weeks, followed by 3 sessions per week of home exercise for 12 weeks) or the control group (usual medical care). Subjects will be assessed at baseline, 12 weeks and 24 weeks.</p> <p>Discussion</p> <p>This study will determine whether outpatient-based, whole body exercise training is beneficial and safe in individuals with pulmonary arterial hypertension. Additionally, this study will contribute to clinical practice guidelines for this patient population.</p> <p>Trial registration</p> <p>Australia and New Zealand Clinical Trials Register (ANZCTR): <a href="http://www.anzctr.org.au/ACTRN12609000502235.aspx">ACTRN12609000502235</a></p

    Exhaled and arterial levels of endothelin-1 are increased and correlate with pulmonary systolic pressure in COPD with pulmonary hypertension

    Get PDF
    BACKGROUND: Endothelin-1 (ET-1) and Nitric Oxide (NO) are crucial mediators for establishing pulmonary artery hypertension (PAH). We tested the hypothesis that their imbalance might also occur in COPD patients with PAH. METHODS: The aims of the study were to measure exhaled breath condensate (EBC) and circulating levels of ET-1, as well as exhaled NO (FENO) levels by, respectively, a specific enzyme immunoassay kit, and by chemiluminescence analysis in 3 groups of subjects: COPD with PAH (12), COPD only (36), and healthy individuals (15). In order to evaluate pulmonary-artery systolic pressure (PaPs), all COPD patients underwent Echo-Doppler assessment. RESULTS: Significantly increased exhaled and circulating levels of ET-1 were found in COPD with PAH compared to both COPD (p < 0.0001) only, and healthy controls (p < 0.0001). In COPD with PAH, linear regression analysis showed good correlation between ET-1 in EBC and PaPs (r = 0.621; p = 0.031), and between arterial levels of ET-1 and PaPs (r = 0.648; p = 0.022), while arterial levels of ET-1 inversely correlated with FEV1%, (r = -0.59, p = 0.043), and PaPs negatively correlated to PaO2 (r = -0.618; p = 0.032). Significantly reduced levels of FENO were found in COPD associated with PAH, compared to COPD only (22.92 +/- 11.38 vs.35.07 +/- 17.53 ppb; p = 0.03). Thus, we observed an imbalanced output in the breath between ET-1 and NO, as expression of pulmonary endothelium and epithelium impairment, in COPD with PAH compared to COPD only. Whether this imbalance is an early cause or result of PAH due to COPD is still unknown and deserves further investigations

    Distribution of motor unit potential velocities in short static and prolonged dynamic contractions at low forces: use of the within-subject’s skewness and standard deviation variables

    Get PDF
    Behaviour of motor unit potential (MUP) velocities in relation to (low) force and duration was investigated in biceps brachii muscle using a surface electrode array. Short static tests of 3.8 s (41 subjects) and prolonged dynamic tests (prolonged tests) of 4 min (30 subjects) were performed as position tasks, applying forces up to 20% of maximal voluntary contraction (MVC). Four variables, derived from the inter-peak latency technique, were used to describe changes in the surface electromyography signal: the mean muscle fibre conduction velocity (CV), the proportion between slow and fast MUPs expressed as the within-subject skewness of MUP velocities, the within-subject standard deviation of MUP velocities [SD-peak velocity (PV)], and the amount of MUPs per second (peak frequency = PF). In short static tests and the initial phase of prolonged tests, larger forces induced an increase of the CV and PF, accompanied with the shift of MUP velocities towards higher values, whereas the SD-PV did not change. During the first 1.5–2 min of the prolonged lower force levels tests (unloaded, and loaded 5 and 10% MVC) the CV and SD-PV slightly decreased and the MUP velocities shifted towards lower values; then the three variables stabilized. The PF values did not change in these tests. However, during the prolonged higher force (20% MVC) test, the CV decreased and MUP velocities shifted towards lower values without stabilization, while the SD-PV broadened and the PF decreased progressively. It is argued that these combined results reflect changes in both neural regulatory strategies and muscle membrane state
    corecore