372 research outputs found

    On type-I migration near opacity transitions. A generalized Lindblad torque formula for planetary population synthesis

    Full text link
    We give an expression for the Lindblad torque acting on a low-mass planet embedded in a protoplanetary disk that is valid even at locations where the surface density or temperature profile cannot be approximated by a power law, such as an opacity transition. At such locations, the Lindblad torque is known to suffer strong deviation from its standard value, with potentially important implications for type I migration, but the full treatment of the tidal interaction is cumbersome and not well suited to models of planetary population synthesis. The expression that we propose retains the simplicity of the standard Lindblad torque formula and gives results that accurately reproduce those of numerical simulations, even at locations where the disk temperature undergoes abrupt changes. Our study is conducted by means of customized numerical simulations in the low-mass regime, in locally isothermal disks, and compared to linear torque estimates obtained by summing fully analytic torque estimates at each Lindblad resonance. The functional dependence of our modified Lindblad torque expression is suggested by an estimate of the shift of the Lindblad resonances that mostly contribute to the torque, in a disk with sharp gradients of temperature or surface density, while the numerical coefficients of the new terms are adjusted to seek agreement with numerics. As side results, we find that the vortensity related corotation torque undergoes a boost at an opacity transition that can counteract migration, and we find evidence from numerical simulations that the linear corotation torque has a non-negligible dependency upon the temperature gradient, in a locally isothermal disk.Comment: Appeared in special issue of "Celestial Mechanics and Dynamical Astronomy" on Extrasolar Planetary System

    Secular interactions between inclined planets and a gaseous disk

    Get PDF
    In a planetary system, a secular particle resonance occurs at a location where the precession rate of a test particle (e.g. an asteroid) matches the frequency of one of the precessional modes of the planetary system. We investigate the secular interactions of a system of mutually inclined planets with a gaseous protostellar disk that may contain a secular nodal particle resonance. We determine the normal modes of some mutually inclined planet-disk systems. The planets and disk interact gravitationally, and the disk is internally subject to the effects of gas pressure, self-gravity, and turbulent viscosity. The behavior of the disk at a secular resonance is radically different from that of a particle, owing mainly to the effects of gas pressure. The resonance is typically broadened by gas pressure to the extent that global effects, including large-scale warps, dominate. The standard resonant torque formula is invalid in this regime. Secular interactions cause a decay of the inclination at a rate that depends on the disk properties, including its mass, turbulent viscosity, and sound speed. For a Jupiter-mass planet embedded within a minimum-mass solar nebula having typical parameters, dissipation within the disk is sufficient to stabilize the system against tilt growth caused by mean-motion resonances.Comment: 30 pages, 6 figures, to be published in The Astrophysical Journa

    Predictive validity of WXYfm and SAIN,LIM food nutrient profiling models in the Whitehall II cohort

    Get PDF
    Background: Nutrient profiling (NP) aims to identify healthier food options according to the content of selected ‘positive’ nutrients e.g. fibre, protein, and ‘negative’ nutrients e.g. sodium, saturated fat. The British and French food safety agencies developed the WXYfm and SAIN,LIM models, respectively. Their predictive validity in relation to chronic disease has yet to be demonstrated. Aim: To test the hypothesis that ‘healthy’ diets as defined by NP have predictive validity. Methods: Between 1991-93, 7,251 participants of the Whitehall II study completed a 127-item food frequency questionnaire (FFQ). WXYfm and SAIN,LIM scores for each FFQ-item were used to derive energy-weighted aggregate diet scores (AS) for each participant and NP model. Validity was assessed against baseline factors including dietary quality indices. Prospective associations were examined with incident CHD, diabetes and cancer, and all-cause mortality (318, 754, 251, and 524 events, respectively—median follow-up time was approximately 17 years). Results: AS were weakly associated with dietary quality indices. Cox modelling identified U-shaped associations (p quadratic trend <.05) between both AS and all outcomes except diabetes. Participants with middle AS had slightly reduced risk; SAIN,LIM estimates were significant for CHD and all-cause mortality. Dietary misreporting, particularly of energy-dense foods with high ‘negative’ nutrient content, was associated with BMI, hypertension and other risk factors, and explained much of the unexpected U-shaped AS-outcome associations. Alternative AS less sensitive to dietary misreporting confirmed the potential of NP as a public health tool. In particular, the WXYfm ‘positive’ nutrients predicted risk reduction for all outcomes. Conclusions: Predictive validity of the NP approach was partly established. The prospective effects of AS on chronic disease outcomes were confounded by the association between vascular risk and energy misreporting. Further predictive validity studies of NP methods ideally require food-based dietary assessment (e.g. diet diaries, 24h recalls) with less reporting bias

    Halting Type I planet migration in non-isothermal disks

    Get PDF
    Aims: We investigate the effect of including a proper energy balance on the interaction of a low-mass planet with a protoplanetary disk. Methods: We use a three-dimensional version of the RODEO method to perform hydrodynamical simulations including the energy equation. Radiation is included in the flux-limited diffusion approach. Results: The sign of the torque depends sensitively on the ability of the disk to radiate away the energy generated in the immediate surroundings of the planet. In the case of high opacity, corresponding to the dense inner regions of protoplanetary disks, migration is directed \emph{outward}, instead of the usual inward migration that was found in locally isothermal disks. For low values of the opacity we recover inward migration, and we show that torques originating in the coorbital region are responsible for the change in migration direction.Comment: 4 pages, 5 figures, accepted for A&A letter

    Recent developments in planet migration theory

    Full text link
    Planetary migration is the process by which a forming planet undergoes a drift of its semi-major axis caused by the tidal interaction with its parent protoplanetary disc. One of the key quantities to assess the migration of embedded planets is the tidal torque between the disc and planet, which has two components: the Lindblad torque and the corotation torque. We review the latest results on both torque components for planets on circular orbits, with a special emphasis on the various processes that give rise to additional, large components of the corotation torque, and those contributing to the saturation of this torque. These additional components of the corotation torque could help address the shortcomings that have recently been exposed by models of planet population syntheses. We also review recent results concerning the migration of giant planets that carve gaps in the disc (type II migration) and the migration of sub-giant planets that open partial gaps in massive discs (type III migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physic

    On the coorbital corotation torque in a viscous disk and its impact on planetary migration

    Full text link
    We evaluate the coorbital corotation torque on a planet on a fixed circular orbit embedded in a viscous protoplanetary disk, for the case of a steady flow in the planet frame. This torque can be evaluated just from the flow properties at the separatrix between the librating (horseshoe) and circulating streamlines. A stationary solution is searched for the flow in the librating region. When used to evaluate the torque exerted by the circulating material of the outer and inner disk on the trapped material of the librating region, this solution leads to an expression of the coorbital corotation torque in agreement with previous estimates. An analytical expression is given for the corotation torque as a function of viscosity. Lastly, we show that additional terms in the torque expression can play a crucial role. In particular, they introduce a coupling with the disk density profile perturbation (the `dip' which surrounds the planet) and add to the corotation torque a small, positive fraction of the one-sided Lindblad torque. As a consequence, the migration could well be directed outwards in very thin disks (aspect ratio smaller than a few percent). This 2D analysis is especially relevant for mildly embedded protoplanets (sub-Saturn sized objects).Comment: 10 pages, 2 figure

    The Parker Instability in 3-D: Corrugations and Superclouds Along the Carina-Sagittarius Arm

    Full text link
    Here we present three-dimensional MHD models for the Parker instability in a thick magnetized disk, including the presence of a spiral arm. The BB-field is assumed parallel to the arm, and the model results are applied to the optical segment of the Carina-Sagittarius arm. The characteristic features of the undular and interchange modes are clearly apparent in the simulations. The undular mode creates large gas concentrations distributed along the arm. This results in a clear arm/inter-arm difference: the instability triggers the formation of large interstellar clouds inside the arms, but generates only small structures with slight density enhancements in the inter-arm regions. The resulting clouds are distributed in an antisymmetric way with respect to the midplane, creating an azimuthal corrugation along the arm. For conditions similar to those of the optical segment of the Carina-Sagittarius arm, it has a wavelength of about 2.4 kpc. This structuring can explain the origin of both HI superclouds and the azimuthal corrugations in spiral arms. The wavelength matches the corrugation length derived with the young stellar groups located in the optical segment of the Carina-Sagittarius arm. Keywords: Galaxy: kinematics and dynamics -- Galaxy: structure -- Instabilities -- ISM: clouds -- ISM: magnetic fields -- ISM: structure -- MHDComment: 29 pages, 12 figures, Latex, Accepted by the Astrophysical Journa

    Numerical simulations of the type III migration:I. Disc model and convergence tests

    Full text link
    We investigate the fast (type III) migration regime of high-mass protoplanets orbiting in protoplanetary disks. This type of migration is dominated by corotational torques. We study the details of flow structure in the planet's vicinity, the dependence of migration rate on the adopted disc model, and the numerical convergence of models (independence of certain numerical parameters such as gravitational softening). We use two-dimensional hydrodynamical simulations with adaptive mesh refinement,based on the FLASH code with improved time-stepping scheme. We perform global disk simulations with sufficient resolution close to the planet, which is allowed to freely move throughout the grid. We employ a new type of equation of state in which the gas temperature depends on both the distance to the star and planet, and a simplified correction for self-gravity of the circumplanetary gas. We find that the migration rate in the type III migration regime depends strongly on the gas dynamics inside the Hill sphere (Roche lobe of the planet) which, in turn, is sensitive to the aspect ratio of the circumplanetary disc. Furthermore, corrections due to the gas self-gravity are necessary to reduce numerical artifacts that act against rapid planet migration. Reliable numerical studies of Type III migration thus require consideration of both the thermal andthe self-gravity corrections, as well as a sufficient spatial resolution and the calculation of disk-planet attraction both inside and outside the Hill sphere. With this proviso, we find Type III migration to be a robust mode of migration, astrophysically promising because of a speed much faster than in the previously studied modes of migration.Comment: 17 pages, 15 figures, submitted to MNRAS. Comments welcom

    The Lopsidedness of Present-Day Galaxies: Results from the Sloan Digital Sky Survey

    Full text link
    Large-scale asymmetries in the stellar mass distribution in galaxies are believed to trace non-equilibrium situations in the luminous and/or dark matter component. These may arise in the aftermath of events like mergers, accretion, and tidal interactions. These events are key in the evolution of galaxies. In this paper we quantify the large-scale lopsidedness of light distributions in 25155 galaxies at z < 0.06 from the Sloan Digital Sky Survey Data Release 4 using the m = 1 azimuthal Fourier mode. We show that the lopsided distribution of light is primarily due to a corresponding lopsidedness in the stellar mass distribution. Observational effects, such as seeing, Poisson noise, and inclination, introduce only small errors in lopsidedness for the majority of this sample. We find that lopsidedness correlates strongly with other basic galaxy structural parameters: galaxies with low concentration, stellar mass, and stellar surface mass density tend to be lopsided, while galaxies with high concentration, mass, and density are not. We find that the strongest and most fundamental relationship between lopsidedness and the other structural parameters is with the surface mass density. We also find, in agreement with previous studies, that lopsidedness tends to increase with radius. Both these results may be understood as a consequence of several factors. The outer regions of galaxies and low-density galaxies are more susceptible to tidal perturbations, and they also have longer dynamical times (so lopsidedness will last longer). They are also more likely to be affected by any underlying asymmetries in the dark matter halo.Comment: 42 pages, 13 figures, 3 tables, accepted to Ap

    On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks

    Full text link
    Young planets embedded in their protoplanetary disk interact gravitationally with it leading to energy and angular momentum exchange. This interaction determines the evolution of the planet through changes to the orbital parameters. We investigate changes in the orbital elements of a 20 Earth--mass planet due to the torques from the disk. We focus on the non-linear evolution of initially non-vanishing eccentricity ee and/or inclination ii. We treat the disk as a two- or three-dimensional viscous fluid and perform hydrodynamical simulations with an embedded planet. We find rapid exponential decay of the planet orbital eccentricity and inclination for small initial values of ee and ii, in agreement with linear theory. For larger values of e>0.1e > 0.1 the decay time increases and the decay rate scales as e˙e2\dot{e} \propto e^{-2}, consistent with existing theoretical models. For large inclinations (ii > 6 deg) the inclination decay rate shows an identical scaling di/dti2di/dt \propto i^{-2}. We find an interesting dependence of the migration on the eccentricity. In a disk with aspect ratio H/r=0.05H/r=0.05 the migration rate is enhanced for small non-zero eccentricities (e<0.1e < 0.1), while for larger values we see a significant reduction by a factor of 4\sim 4. We find no indication for a reversal of the migration for large ee, although the torque experienced by the planet becomes positive when e0.3e \simeq 0.3. This inward migration is caused by the persisting energy loss of the planet. For non gap forming planets, eccentricity and inclination damping occurs on a time scale that is very much shorter than the migration time scale. The results of non linear hydrodynamic simulations are in very good agreement with linear theory for small ee and ii.Comment: accepted for Astronomy & Astrophysics, 16 pages, 16 figures, animations under: http://www.tat.physik.uni-tuebingen.de/~kley/publ/paper/eccp.htm
    corecore