201 research outputs found

    The observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide

    Full text link
    We report the measurement of the inhomogeneous linewidth, homogeneous linewidth and spin state lifetime of Pr3+ ions in a novel waveguide architecture. The TeO2 slab waveguide deposited on a bulk Pr3+:Y2SiO5 crystal allows the 3H4 - 1D2 transition of Pr3+ ions to be probed by the optical evanescent field that extends into the substrate. The 2 GHz inhomogeneous linewidth, the optical coherence time of 70 +- 5 us, and the spin state lifetime of 9.8 +- 0.3 s indicate that the properties of ions interacting with the waveguide mode are consistent with those of bulk ions. This result establishes the foundation for large, integrated and high performance rare-earth-ion quantum systems based on a waveguide platform.Comment: 5 pages, 5 figure

    Protein patterns of black fungi under simulated Mars-like conditions

    Get PDF
    Two species of microcolonial fungi – Cryomyces antarcticus and Knufia perforans - and a species of black yeasts–Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure

    One-loop Vilkovisky-DeWitt Counterterms for 2D Gravity plus Scalar Field Theory

    Full text link
    The divergent part of the one-loop off-shell effective action is computed for a single scalar field coupled to the Ricci curvature of 2D gravity (cϕRc \phi R), and self interacting by an arbitrary potential term V(ϕ)V(\phi). The Vilkovisky-DeWitt effective action is used to compute gauge-fixing independent results. In our background field/covariant gauge we find that the Liouville theory is finite on shell. Off-shell, we find a large class of renormalizable potentials which include the Liouville potential. We also find that for backgrounds satisfying R=0R=0, the Liouville theory is finite off shell, as well.Comment: 19 pages, OKHEP 92-00

    Strain Engineered Electrically Pumped SiGeSn Microring Lasers on Si

    Get PDF
    SiGeSn holds great promise for enabling fully group-IV integrated photonics operating at wavelengths extending in the mid-infrared range. Here, we demonstrate an electrically pumped GeSn microring laser based on SiGeSn/GeSn heterostructures. The ring shape allows for enhanced strain relaxation, leading to enhanced optical properties, and better guiding of the carriers into the optically active region. We have engineered a partial undercut of the ring to further promote strain relaxation while maintaining adequate heat sinking. Lasing is measured up to 90 K, with a 75 K T0. Scaling of the threshold current density as the inverse of the outer circumference is linked to optical losses at the etched surface, limiting device performance. Modeling is consistent with experiments across the range of explored inner and outer radii. These results will guide additional device optimization, aiming at improving electrical injection and using stressors to increase the bandgap directness of the active material

    GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers

    Get PDF
    GeSn and SiGeSn are promising materials for the fabrication of a group IV laser source offering a number of design options from bulk to heterostructures and quantum wells. Here, we investigate GeSn/SiGeSn multi quantum wells using the optically pumped laser effect. Three complex heterostructures were grown on top of 200 nm thick strain-relaxed Ge0.9Sn0.1 buffers. The lasing is investigated in terms of threshold and maximal lasing operation temperature by comparing multiple quantum well to double heterostructure samples. Pumping under two different wavelengths of 1064 and 1550 nm yields comparable lasing thresholds. The design with multi quantum wells reduces the lasing threshold to 40 ± 5 kW/cm2 at 20 K, almost 10 times lower than for bulk structures. Moreover, 20 K higher maximal lasing temperatures were found for lower energy pumping of 1550 nm

    ROCK Inhibitor Is Not Required for Embryoid Body Formation from Singularized Human Embryonic Stem Cells

    Get PDF
    We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin, +ROCKi/-spin, -ROCKi/+spin, and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions, including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation, elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment, and low-cost scalability, which will directly support automated, large-scale production of hEBs and hESC-derived cells needed for clinical, research, or therapeutic applications
    corecore