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A B S T R A C T   

The hydrothermal carbonization (HTC) process has been found to consistently improve biomass fuel charac-
teristics by raising the higher heating value (HHV) of the hydrochar as process severity is increased. However, 
this is usually associated with a decrease in the solid yield (SY) of hydrochar, making it difficult to determine the 
optimal operating conditions to obtain the highest energy yield (EY), which combines the two parameters. In this 
study, a graph-based genetic programming (GP) method was used for developing correlations to predict HHV, 
SY, and EY for hydrochars based on published values from 42 biomasses and a broad range of HTC experimental 
systems and operating conditions, i.e., 5 ≤ holding time (min) ≤ 2208, 120 ≤ temperature (◦C) ≤ 300, and 0. 
0096 ≤ biomass to water ratio ≤ 0.5. In addition, experiments were carried out with 5 pomaces at 4 temperatures 
and two reactor scales, 1 L and 18.75 L. The correlations were evaluated using this experimental data set in order 
to estimate prediction errors in similar experimental systems. The use of the correlations to predict HTC con-
ditions to achieve the maximum EY is demonstrated for three common feedstocks, wheat straw, sewage sludge, 
and a fruit pomace. The prediction was confirmed experimentally with pomace at the optimized HTC conditions; 
we observed 6.9 % error between the measured and predicted EY %. The results show that the correlations can be 
used to predict the optimal operating conditions to produce hydrochar with the desired fuel characteristics with a 
minimum of actual HTC runs.   

Glossary.  
Symbol Description Units 

HHVHC Higher heating value of hydrochar MJ/kg 
HHV0 Higher heating value of feedstock MJ/kg 
SY Solid yield % 
EY Energy yield % 
t Time min 
T Temperature ̊C 
R Biomass to water ratio g/g 
AE Absolute error – 
AAE Average absolute error – 
BE Biased error – 
ABE Average biased error – 

(continued on next column)  

(continued ) 

Symbol Description Units 

GP Genetic programming – 
HTC Hydrothermal carbonization – 
C Carbon % 
H Hydrogen % 
N Nitrogen % 
S Sulfur % 
A Ash % 
O Oxygen % 
Daf dry ash-free – 
Db dry basis – 
HHV-Elemental HHV derived from elemental composition MJ/kg 
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(continued ) 

Symbol Description Units 

HHV-Op HHV derived from operating condition MJ/kg 
Ash0 Ash of feedstock %   

1. Introduction 

Sustainable management concepts are required for the numerous wet 
organic residues produced in industry, agriculture and municipalities, 
such as food processing residues, livestock manures, and municipal 
organic wastes. The process of hydrothermal carbonization (HTC) has 
often been proposed to turn these wet organic residues into stable 
carbon-rich material, hydrochar, for fuel applications or other uses 
[1–3]. Hydrothermal reactions such as dehydration, decarboxylation, 
and decarbonylation in reactor systems using subcritical water can 
improve the fuel characteristics of the organic residues by reducing the 
ratio of oxygen to the carbon content, which increases their calorific or 
heating value [4,5]. Studies with different feedstocks such as lignocel-
lulosic biomass [6], sewage sludge [5,7], animal [8] and food [9] wastes 
have reported increases in higher heating values of hydrochars (HHVHC) 
ranging from 3.0% to 37.8 %. Since the process takes place in water, the 
energy-intensive step of pre-drying the feedstock is eliminated [6]. The 
product hydrochar has been found to be require less energy to dewater 
than the initial feedstock [10]. Using HTC to reduce the cost of trans-
portation, handling, and storage of wet organic residues increases their 
potential for use as fuel for co-combustion in existing power plants [11], 
and in other combustion processes [4]. The HTC process conditions 
determine the effect on the heating value, with higher energy inputs, in 
terms of process temperatures and holding times, producing hydrochars 
with higher heating values, but with less mass remaining, i.e. with a 
lower solid yield [11]. Therefore, the assessment of whether the HTC 
process is economically feasible for converting organic residues into 
hydrochar for fuel purposes must include an evaluation of the energy 
yield, which includes the changes in both the HHVHC and solid yield. 

Correlations that allow the prediction of the final HHV values and the 
expected solid yield from HTC processes would be helpful to estimate 
the potential benefits to be expected for each feedstock. Since HHV in-
creases with process severity and solid yield decreases, locating the 
optimal process conditions for the highest energy yield is important for 
economical operation. The availability of prediction tools would reduce 
the amount of experimental trial and error required to find the optimum. 
While many correlations exist for predicting the HHV from the 
elemental composition of a solid [12,13], very few have proposed gen-
eral correlations for HHV and/or solid yield (SY) as a function of the 
operating conditions. Two correlations by Li et al. (2015) were devel-
oped for HHV and SY using regression techniques based on a statistical 
analysis of 263 data points from the literature [14]. However, they have 
limited practicality because they require an extensive list of input data, 
which is often not available. Further correlations for HHV [15,16], and 
for SY [15,17–21] have been derived for single feedstocks in statistically 
designed experiments and not intended as general correlations to be 
used for other feedstocks and reactor systems. More recently, machine 
learning models were developed to predict the HHV and SY [22–24]. 
Vardiambasis et al. (2020) employed the Artificial Neural Network 
(ANN) technique to predict the HHVHC and carbon content of hydro-
chars based on the elemental composition of the feedstock, and the HTC 
process conditions, temperature and time [3]. However, the artificial 
neural networks method is unable to give an explicit correlation, which 
can be used for future predictions. Therefore, developing general HHVHC 
and SY correlations based on very few input variables that can be used 
for different feedstocks and a wide range of operating conditions would 
help to reduce the number of time and effort-consuming HTC runs 
needed to optimize the energy yield. 

In this study, we used an intelligent non-linear based method of 
genetic programming combined with extensive data collected from 
literature to develop general correlations that can be used to predict the 
HHVHC and the SY of the hydrochar for chosen HTC process conditions. 
Firstly, two correlations to predict the HHVHC were derived, one based 
on the elemental composition of the hydrochar and the other based on 
the HTC operating conditions. Secondly, a correlation to predict SY from 
the operating conditions was developed. The accuracy of these corre-
lations was compared with that of previous correlations, and a sensi-
tivity analysis was made for each correlation to identify the effect of the 
individual variables on the response. In addition, the correlations were 
evaluated with an additional experimental data set from the hydro-
thermal carbonization of 5 biomasses produced in this study. In the last 
section, we demonstrate how the correlations can be used together to 
predict the energy yield and to find the optimum process conditions for 
giving the maximum energy yield. This was done theoretically for two 
common feedstocks: wheat straw and sewage sludge, and was confirmed 
experimentally for quince pomace. 

2. Material and methods 

2.1. Analysis of results 

The solid yield (SY) describes the percentage of input mass recovered 
as hydrochar and was calculated as the ratio of carbonized product in 
weight (MC) to raw feedstock weight (Mb). 

SY =
MC

Mb
× 100 [%] (1) 

Similarly, the energy yield is the percentage of the initial energy in 
the feedstock that is recovered in the hydrochar. 

2.2. Energy yield (EY) 

EY = SY ×
HHVHC

HHV0
[%] (2) 

Where SY is solid yield, HHVHC and HHV0 are the higher heating 
values of product and biomass, respectively. 

To compare the prediction accuracy between the different correla-
tions, both the coefficient of determination (R2) as well as the average 
absolute error (AAE) and absolute bias error (ABE) were used. Since 
there are many outliers in the data sets, AAE and ABE are used to 
describe the prediction accuracy of the correlations, while R2 indicates 
how much of the variation in the measured data is explained by the 
correlations. For each data set and correlation, the errors between the 
predicted value (ValuePredicted) and the measured value (Valuemeasured) 
are calculated: 

AAE =
1
n

∑n

i=1

⃒
⃒
⃒
⃒
⃒

ValuePredicted
i − Valuemeasured

i

Valuemeasured
i

⃒
⃒
⃒
⃒
⃒

(3)  

and 

ABE =
1
n

∑n

i=1

ValuePredicted
i − Valuemeasured

i

Valuemeasured
i

(4)  

where the value is HHVHC, SY and EY. 

2.3. Data selection 

Literature published in the field of hydrothermal carbonization from 
October 2008 until May 2020 was reviewed and 35 references were 
selected that reported sufficient data on experimental HTC process 
conditions, measured higher heating values, elemental composition of 
biomass and/or hydrochar, and SY. These contained 298 data points 
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from 42 feedstocks that could be partially used to develop and test the 
correlation of HHV based on elemental composition and operating 
condition, and for SY. Table S1 in supplementary material summarizes 
the number of data, feedstocks and type of feedstocks used in each 
correlation. Prior to commencing the study, the data points were con-
verted to the appropriate values (either dry ash-free basis (daf) or dry 
basis (db)), using X––Y× 100/(100-ash), where Y is the percentage of C, 
H, N, S and O in db and X the percentages of these elements on daf basis. 
After collecting all the data points, random numbers generated using MS 
Excel were assigned to each dataset, and ordered from smallest to 
largest, then the first 70 % of data was selected for training the corre-
lations and the rest (30 %) for testing. All data points are shown in the 
final figures for the correlations. 

The data set (281 data) collected from [6,13,15,16,20,25–45] for 
derivation of HHVHC based on the elemental composition of the 
hydrochar (HHV-Elemental), covers a wide range of measured HHVHC 
(14.37–33.21 MJ/kg) and elemental composition (wt %, db), i.e. 
30.49 ≤ C % ≤ 76.5, 2.94 ≤ H % ≤ 9.4, 0 ≤ N % ≤ 10.18, 0 ≤ S % 
≤ 3.66, 5 ≤ O % ≤ 48, 0 ≤ Ash % ≤ 43.92. To develop the correlations 
based on operation conditions, a wide range of data (298 data) was also 
available in [6,16,21,25,27,28,30,31–42,44,45–53] (see Figure S1 in 
Supplementary Information), For the correlation HHV-Operating con-
ditions, the ranges were 13.3 ≤ HHV0 of biomass (MJ/kg) ≤ 27.7, 
5 ≤ holding time t (min) ≤ 2208, 120 ≤ temperature T (◦C) ≤ 300, 
0.0096 ≤ biomass to water ratio R ≤ 0.5. Most of this data (281 data) 
was also used for the prediction of SY, where the measured SY values 
ranged from 33.32 % and 98.23 %, except the holding time (min) was 
reduced to 0–1440 min [6,15,16,20,25,27,28,30,31,33–37,41,42, 
44–48,50,51–53]. The predicted EY values were compared to the 
so-called measured EY values calculated from the measured HHV0, 
HHVHC and SY values. 

2.4. Genetic programming (GP) 

In the present study, a graph-based GP was used to explore new 
correlations for predicting the HHVHC and SY. GP was patented by Koza 
[54] as an evolutionary computing, machine learning or artificial in-
telligence technique based on a tree representation of genes. In contrast 
to other intelligent methods, such as artificial neural networks, GP 
provides an explicit relationship between dependent and independent 
variables, which is the main advantage of this method. The GP was 
performed using eureqa toolbox [55] and Figure S2 in supplementary 
material shows the algorithm used by GP to develop the correlations in 
this study. More details about GP method can be found elsewhere 
[56–58]. For the sensitivity analysis of the GP models, the sample 
Pearson’s correlation coefficient was used as the relevance coefficient to 
determine the effects of the input variables on the model outputs. For 
each input variable, the relevance coefficient varies between (− 1) to 
(+1), indicating a strongly negative to strongly positive relationship. 

2.5. Hydrothermal carbonization 

To evaluate the correlations developed by GP in this study, we per-
formed 20 HTC experiments of 5 pomaces, namely, quince, apple, pear, 
beetroot, carrot, collected from a local company in Havelland, Germany. 
Since the effect of temperature on HHV and yield of hydrochar is higher 
than the time and biomass to water ratio, only the temperature was 
altered from 220, 230, 240 and 250 ◦C. The biomass to water ratio (R) 
was held at approximately 0.08 and time at 3 h for all runs. The mixture 
of water and wet pomace was adjusted to 625 g for all the 20 runs and 
then transferred into a 1 L Parr stirred reactor (reactor series 4520, 
Moline, IL, USA). The slurry was heated at a rate of 2 ◦C/min and stirred 
continuously at 90 rpm. At the end of the reaction time, the heater was 
turned off, and the reactor was allowed to cool down to around 46 ̊ C. The 
slurry was filtered using a vacuum filter paper (ROTH Type 113A-110, 
5–8 µm). The solid product was dried in an oven at 105 ◦C for 24 h, 

placed into a zip-lock bag and stored for further analyses. To evaluate 
the effect of scale on the prediction error of the correlations, we per-
formed an example run for quince in a 18.75 L Parr stirred reactor 
(5 gal, model 4557, Moline, Illinois 61265–1770 USA), at 250 ◦C and 
3 h and the same heating rate as in the 1 L reactor. At the end of reac-
tion, the reactor was cooled down over night. The slurry was filtered 
with the same procedure as 1 L reactor. Both reactors (1 L and 18.75 L) 
were filled to approximately 63 % of the reactor’s total volume. After 
deriving the correlations, one extra HTC run was made for quince in 1 L 
reactor at suggested optimum conditions (T = 172 ◦C, t = 5 min, 
R=0.3). 

2.5.1. Analysis 
A Vario El elemental analyzer (Elementar Analysesysteme, Hanau, 

Germany) was used to measure the elemental carbon, hydrogen, nitro-
gen, and sulfur (CHNS) by using the sulfonic acid as a reference. The 
oxygen content was calculated by difference. Dry matter (DM) was 
determined at 105 ◦C for 24 h, while ash was determined at 550 ◦C for 
5 h. The higher heating values (HHVs) of solid samples was measured in 
IKA Calorimeter C 200-System. The analysis was performed at least two 
times and the mean values, together with solid and energy yield, which 
were calculated based on Eq. 1, and 2 can be found in Table S2 in 
supplemental information. 

3. Results and discussion 

3.1. HHVHC prediction based on elemental analysis of the hydrochar 

For fuel-related applications of hydrochar, a greater HHV improves 
the efficacy of the combustion and reduces the cost of transportation. 
Decades of research on a variety of organic solids, ranging from coal to 
biomass, have shown that it is possible to correlate the elemental 
composition of an organic solid (i.e. C, H, N, S, A, O) with its experi-
mentally measured HHV [12], (see Table S3 in supplementary material). 
The correlation is often very specific for the type of solid. Predicting the 
HHVHC using its elemental composition, which is often routinely 
measured, reduces the cost of further analysis with the bomb calori-
metric method. The correlation extracted by genetic programming from 
281 data points for hydrochar produced from 38 feedstocks [6,13,15,16, 
20,25–45], is a fairly simple equation using the carbon (C) and oxygen 
(O) content of the hydrochar on a wt %, dry basis to predict the HHV: 

HHVHC = 0.3853 × C +
44.98

O
(5)  

where C and O are in wt %, db, and HHVHC in MJ/kg. 
This correlation was trained for 196 data with an absolute average 

error (AAE) of 4.76 % and tested for 85 data points with an AAE of 5.8 %. 
These correspond to R2 = 0.90 and 0.85 respectively. The close agree-
ment between the errors for the derivation and testing groups, and the 
closely fitted measured data to the predicted data (Fig. 1) shows that the 
correlation can be used to predict the HHVHC for a wide range of feed-
stocks. The correlation evaluated by the pomace experimental data set 
offers a similar AAE of 5.9 %. 

More information about the effect of O and C, on measured and 
predicted HHV can be found in supplementary information (Figure S3). 

3.1.1. Limitation of usage and error estimation of HHV-Elemental 
correlation 

The correlation was developed for hydrochars with HHV values 
ranging from 14.37 to 33.21 MJ/kg and elemental compositions ranging 
from 30.49 ≤ C ≤ 76.5; 5 ≤ O % ≤ 48. (wt %, db). The hydrochars were 
made from a wide range of feedstocks (38). It can be seen in Fig. 1 that 
the deviation between predicted and measured HHVHC is higher in some 
groups of feedstock, e.g. algae and sewage sludge. Closer analysis of the 
feedstock composition and distribution of the error shows that 
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feedstocks with high ash content contribute more to the error than 
others (Figures S4 and S5 in the supplementary material). However, not 
all high ash containing hydrochars have high error. Therefore, the GP 
correlation (S1) that included A as an input variable did not achieve a 
lower AAE for all feedstocks than the chosen correlation (see SI and 
Figure S6 for more discussion). More structural and chemical analyses of 
the very heterogeneous group of sewage sludge are necessary to identify 
why some deviate more than others. 

3.1.2. Previous correlations for predicting HHVHC based on elemental 
analysis 

A literature search returned 23 correlations for predicting HHV from 
the elemental composition of solids. Most were developed for coals, only 
a few for biomass, municipal solid waste, or other fuels, and none spe-
cifically for hydrochars. The predicted HHV values for the hydrochar 
data set were calculated with all 23 correlations and the errors (AAE, 
ABE) were compared. The results for selected correlations collected from 
[12,59] can be found in Table S3 of the supplementary material. Of the 
23 correlations, the widely used correlation by Channiwala and Parikh 
(2002) [12], which was developed for gaseous, solid and liquid fuels, as 
well as for biomass and coals, produced the best agreement for the 
hydrochars (5.4 %). The correlation requires values for H, N, S, ash in 
addition to C and O. In comparison, our correlation, which was derived 
with hydrochar values and requires only C and O values, offered the 
lowest error (5.1 %). The proposed correlation can also predict the HHV 
for the feedstock (AAE=6.34 %). Interestingly, the more complex cor-
relations (Channiwala, IGT) have slightly smaller errors for the 
feedstocks. 

3.2. HHVHC prediction based on operating conditions 

Predicting the HHVHC using process condition helps us to design the 
HTC experiments more efficiently and also gives some overview of the 
effect of process condition on the HHVHC. Here we are introducing a 
correlation which can predict the HHVHC taking HTC process conditions 
such as time, temperature and biomass to water ratio into account. To 

include the impact of different feedstocks on predicting the HHV of their 
hydrochars, we considered HHV of feedstock as an input factor for the 
model. A correlation was trained (AAE=6.4 % and R2 =0.85) and tested 
(AAE=8.7 % and R2 =0.73) using 298 data points and 42 feedstocks as: 

HHVHC = HHV0 +
0.51

R + 0.65 × HHV0 − 10.93

+
T + 0.0003 × t × T − 143.3

HHV0
(6)  

where, t (min) is the holding time at target temperature (◦C), R is 
biomass to water ratio, and HHV0 is the HHV of feedstock. 

Fig. 2 compares the fitness of measured and predicted HHV for 
different feedstocks. With this correlation, the HHVHC can be calculated 
without performing the HTC experiments just based on the planned 
process conditions and the HHV of the feedstock. The pomace experi-
mental data shows close agreement with predicted values, with an AAE 
of 7.8 %, and the error is less than testing data set. This evaluation shows 
that the errors found for the training and testing data set are reliable. 

3.2.1. Limitation of usage and error estimation of HHV-OP correlation 
The data set collected for the derivation of this correlation covers a 

wide range of feedstock and conditions, i.e. 13.3 ≤ HHV0 of biomass 
(MJ/kg) ≤ 27.7, 5 ≤ holding time t (min) ≤ 2208, 120 ≤ temperature T 
( ̊C) ≤ 300, 0.0096 ≤ biomass to water ratio R ≤ 0.5. In Figure S7, it can 
be seen that the predicted and measured HHVHC values deviate more for 
some groups of feedstock, especially animal and industrial wastes, as 
well as sewage sludge. Similar to the error analysis for the HHV- 
Elemental correlation, these feedstocks with high ash content 
contribute more to the error than others (Figure S8). The reactor size in 
the range studied (15 ml to 4.65 L) and whether the heating system was 
direct or indirect seem to have little effect on the accuracy of correlation, 
although the time required for heating up different sized of reactors may 
vary considerably. However, as can be seen in Figure S8 (in supple-
mentary material), there are no obvious changes in error by using larger 
reactors, or by the range of operating conditions. 

In order to expand the range of reactors studied, the experimental 

Fig. 1. Comparison between the measured HHVHC from 38 feedstocks and those predicted by the HHV-Elemental correlation, and evaluation of correlation using 21 
experimental data. 
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results for quince pomace in a 1 L and 18.75 L reactor from this study are 
compared to predicted values in Table 1. The error difference between 
the measured and predicted HHVHC produced from the larger scale 
reactor is very small, 2.8 %. In the future, a broader base of data from 
large reactors, lab-scale and industrial scale, are needed to improve the 
correlations. In general, more complete information needs to be pub-
lished on the reactor systems used, e.g. heat and mass transfer, the type 
of reactor and feedstock conditions, in order to develop correlations for 
predicting industrial-scale reactors. 

In contrast, for the microwave system, the correlation offers higher 
error, AAE= 16.2 %. One reason for the high error with microwave- 
assisted hydrothermal carbonization systems may be that the heat 
transfer is started from the core of the feedstock particles and expands to 
the rest of the feedstock and aqueous media. In contrast, with conven-
tional HTC reactor heaters, heat is transferred from the wall of reactor to 
the aqueous media and then via conduction and convection goes 
through the feedstock particles. Many factors, such as reaction tem-
perature and material properties such as density, structure and chemical 
composition, dielectric properties, dipole moments associated with 
water and other molecules, need to be considered as effective factors in 
microwave-assisted hydrothermal carbonization [15]. Developing a 
generalized correlation for microwave-assisted systems that includes the 
effect of the HHV of feedstock, and three operating parameters, as well 
as before mentioned factors requires future studies with a wider range of 
data. 

3.2.2. Previous correlations for predicting HHVHC based on operating 
conditions 

Our literature search returned three correlations developed to pre-
dict HHVHC based on process conditions (Table S4 in supplementary 
material). The effectiveness and limitations of each correlation were 
compared with Eq. 6 developed in this study if possible. The first cor-
relation in Table S4 (Li et al.) was developed based on a statistical 
analysis of 263 data points and requires in addition to t and T, the 
elemental and proximate analysis of biomass (C, H, A, volatile matter 
VM, fixed carbon FC), the heating rate HR and time HT and the volume 
ratio VR [14]. The proximate analysis of biomass and heating rate were 
not available in most of the selected publications for this study; there-
fore, we could not predict the HHVHC by this correlation considering the 
data, which we collected from literature. The correlations reported by 
Kang et al. (2019) [15], and Volpe et al. (2017) [16], were derived for 
single feedstocks and were not intended as general correlations to be 
used for other data, e.g. using coded values for the operating conditions 
instead of actual values [15]. A test of the correlations with the wide 
ranging data from 40 feedstocks showed large error. Therefore, we 
compared the results of our correlation with these two correlations using 
the small number of data points from each study. Eq. 6 showed higher 
accuracy compared to the correlation reported by Kang et al. (2019) 
[15] and close to the predicted results of Volpe et al. (2017) [16]. In 
conclusion, the HHV-OP correlation needs only values of the HHV of the 
feedstock and desired process conditions to predict the HHVHC and can 
be used with ease and high accuracy compared to previous correlations. 

3.2.3. Sensitivity analysis of correlation HHV-OP 
The sensitivity analysis of the HHV-OP correlation clearly shows that 

the HHV of feedstock has the greatest impact on HHVHC (Figure S9 in 
supplementary material), while temperature ranks second followed by 
time and biomass to water ratio. These trends have been seen in other 
studies [15], although Li et al. found that only time and temperature are 
statistically significant factors. All input variables have a positive in-
fluence on HHVHC. 

Fig. 2. Comparison between the measured HHV data for hydrochars from 40 feedstocks and those predicted by the HHV-OP correlation based on operating con-
ditions, and evaluation of correlation using 21 experimental data. 

Table 1 
Comparison of error between measured and predicted HHVHC produced in 1 L 
and 18.7 L reactors.  

Reactor size 
(L) 

Measured HHVHC 

(MJ/kg) 
Predicted HHVHC 

(MJ/kg) 
ABE 
% 

AAE 
% 

1 27.42 25.44 -7.2 7.2 
18.75 28.42 25.5 -10 10  
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3.3. Solid yield prediction based on operating conditions 

The ability to predict the expected SY of hydrochar for planned 
operating conditions is a useful tool to design a HTC process efficiently. 
The following correlation based on the process conditions R, t, and T was 
derived using 281 data points and 36 feedstocks: 

Solid yield% = 82.96 + 48.95 × R − 0.01454 × t − 0.0006 × T2 (7)  

where, t = time (min), T = temperature (◦C), R is the biomass to water 
ratio. 

The measured and predicted SY for different feedstocks are 
compared in Fig. 3. The correlation was trained with 196 data points 
(AAE=14.6 %; R2 =0.74) and tested with 85 data points (AAE=13.6 %; 
R2 =0.53). The evaluation of correlation using the experimental dataset 
shows that the higher ash content of feedstocks (e.g., beetroot and 
carrot) resulted in an overprediction of solid yield. In contrast, the 
predicted SY for lower ash content feedstocks, like apple and quince, was 
in close agreement with experimental data. 

3.3.1. Limitation of usage and error estimation of the solid yield correlation 
The solid yield correlation was developed based on a wide range of 

process conditions and different feedstocks, where the measured values 
for SY ranged from 33.32 % and 98.23 %. Most of the data points used to 
derive the HHV-OP correlation could also be used for this derivation. 
The data set covers a wide range for the input variables, i.e., 0 ≤ holding 
time t (min) ≤ 1440, 120 ≤ temperature T ( ̊C) ≤ 300, 
0.0096 ≤ biomass to water ratio R ≤ 0.5, with various reactor sizes and 
types and feedstocks with ash contents between 0.74 % and 28.6 %. 
Therefore, the correlation can be used to estimate SY for a wide range of 
process conditions and feedstocks. However, the accuracy varies be-
tween the groups of feedstock (see Figure S10 in the supplementary 
material). The best prediction with the lowest error is observed for 
faecal sludge, agro-industrial waste (except corn stalk), fruit and vege-
table waste, sewage sludge (Figure S11 in supplementary information). 
The SY for some individual feedstocks, e.g. corn stover, lime peel and 
waste eucalyptus bark, were not well-captured by the correlation, being 
over (+BE %) or under (-BE %) predicted by as much as 40 %. There is 
again no obvious relationship between the size of reactor and error, 

similar to what was seen for the HHV-OP correlation. 
The correlation offers high error for flash injection (35 %) [49], and 

continuous reactor systems (47.8 %) [60]. For these systems, the SYs 
were over predicted. In contrast, the correlation showed high accuracy 
for batch reactors at two scales with similar heater systems. The com-
parison between the measured and predicted SY % of 1 L and 18.75 L 
reactor shows the 4 % higher accuracy of the predicted results of 
hydrochar produced in 18.75 L (Table 2). More data is required to 
evaluate whether the correlation developed for laboratory-scale reactors 
can be applied to predict industrial-scale batch reactors. 

For many feedstocks, the correlation follows the trend of the 
measured SY, but the value is offset. It can be seen in Fig. 3 (and Table S2 
in supplementary information) that the higher ash content of carrot and 
sugar beet biomasses compared to apple, quince and pear, resulted in an 
over prediction and higher error for SY. A correlation, including a factor 
to account for ash content may improve the prediction, since the inor-
ganic components of the biomass can be expected to behave differently 
than the organic components. Unfortunately, the collected data used to 
train the model did not contain feedstock with gradual changes in ash 
content. The range between 9 % and 16 % was missing (Figure S12 in 
supplementary material). To investigate the effect of ash on SY for 
pomaces, we modeled our experimental data by considering the ash of 
feedstock and temperature as two variables. The correlation (S2) offered 
close agreement between experimental and predicted values with an 
AAE of 1.3 % and R2 of 0.99 (Figure S13); however, the correlation 
became more complicated. Increasing the ash of feedstock and T, 
decreased the SY, whereby the ash content of the biomass showed a 
higher influence on SY than T. In order to develop a generalized corre-
lation for SY that includes the effect of the three operating parameters, 
as well as the feedstock ash content on SY future studies with a wider 
range of data is required. 

Fig. 3. Comparison between the measured for 36 feedstocks and those predicted by the solid yield correlation based on operating conditions, and evaluation of 
correlation using 21 experimental data from 5 biomasses. 

Table 2 
Comparison of error between measured and predicted SY % of two size reactors.  

Reactor size (L) SY % measured SY % predicted ABE % AAE % 
1 49.87 46.63 -6 6 
18.75 47.00 46.29 -2 2  
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3.3.2. Previous correlations for predicting solid yield based on operating 
conditions 

Several correlations have been developed to predict the SY of HTC 
process [14–21,51,61], and we summarized them in Table S5 (see sup-
plementary material). These correlations can be used to predict the solid 
based on operating conditions. However, only one correlation, Li et al. 
(2015) [14], is general and developed based on a large number of data 
points (263) for a wide range of feedstocks. It requires many variables to 
predict the SY. Since many required input variables are not reported in 
the literature for the data points we have collected, we could not test 
their correlation. In contrast, the rest of the correlations (number 2–10) 
were developed based on a few data points for a single feedstock and 
were not intended as general correlations. A test of the correlations with 
the wide-ranging data from our collection showed large error. For six of 
the correlations (2, 3, 4, 7, 8, 9) the original data was available. 
Therefore, we compared the results of our correlation with these six 
correlations using the small number of data points from their respective 
study. As can be seen in Table 5 S, compared to correlations 4, 7 and 9, 
our correlation predicted the SY more accurately, while correlations 2, 
3, 8 were more accurate compared to our correlation. In conclusion, the 
SY correlation developed in this study can be used for a wide range of 
feedstocks and operating conditions while offering relatively low error 

for most of them. 

3.3.3. Sensitivity analysis of correlation for SY based on operating 
conditions 

The sensitivity of the SY prediction to the operating conditions, time, 
temperature, and biomass-water ratio is shown in Figure S14 (see the 
supplementary material). Temperature has the greatest impact on SY. 
Both temperature and time have an inverse relationship with SY, which 
has been seen in many previous studies [15–21,33,51,62–66]. In 
contrast, increasing the biomass-water ratio has been usually found to 
increase the SY [16]. This may be due to greater hydrolysis reactions at 
lower biomass to water ratios [51]. However, the range of investigated R 
in most studies is usually narrow and the effect of biomass to water ratio 
is less evident [17]. 

3.4. Energy yield prediction based on combining the correlations for 
HHVHC and SY 

Identifying the optimal process conditions to achieve the highest 
energy yield EY of a hydrochar is important in order to economically 
operate a HTC system for fuel purposes. The EY is by definition depen-
dent on both the HHVHC and SY at the conditions used in the HTC 

Table 3 
Algorithms for using correlations to predict the energy yield, and the requirements for energy yield prediction.  
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process. However, since HHVHC increases with process severity while SY 
decreases, determining the optimal EY can be difficult. The correlations 
developed in the previous sections for HHVHC and SY can be used to 
search for this optimum before HTC runs are carried out, reducing the 
amount of experimental trial and error required to find the optimum. 
Various combinations of the three correlations (HHV-Elemental, HHV- 
Op and SY) are possible, depending on the data available. In this sec-
tion, we tested three combinations for their ability to predict the EY of 
hydrochars made from the various feedstocks and process conditions in 
the data set. Using the most effective combination, an example is given 
on how to use the correlations to find the optimum process conditions 
for three feedstocks to achieve high EY. 

3.4.1. Selection of most effective combination of correlations 
To predict the energy yield, three combinations of the HHVHC and SY 

correlations developed in the previous sections were tested against 
experimental data. Table 3 shows the algorithms for each of the three 
methods to combine the correlations and their respective input 
requirements. 

Figure S15 (see supplementary material) illustrates the effectiveness 
of each combination in the prediction of the experimental energy yield. 
The final energy yield correlations and their errors compared to the 149 
measured values from literature and 20 experimental values from this 
study are summarized in Table 4. The energy yield calculated by 
combining the HHV-OP and solid yield correlations offered the lowest 
error compared to the other two combinations (AAE=9.5 %). The 
advantage of this method is that it can be used to estimate the energy 
yield of hydrochar without performing any HTC runs. Only a heating 
value for the feedstock (HHV0) is required, either from an analysis or 
literature, and the EY can then be predicted for the desired operating 
conditions. 

3.4.2. Limitation of usage for the energy yield correlations 
The correlations can be used to estimate EY for a wide range of 

process conditions, i.e., 5 ≤ holding time t (min) ≤ 1440, 
120 ≤ temperature T ( ̊ C) ≤ 300, 0.0167 ≤ biomass to water ratio R 
≤ 0.5, and 13.3 ≤ HHV0 of biomass (MJ/kg) ≤ 27.75 and 18 feedstocks. 

3.4.3. Use of the HHV and SY correlations to predict EY 
There is general consensus in the literature that the process tem-

perature is the most influential operating parameter on the two impor-
tant hydrochar characteristics, HHVHC and SY [67]. This was also found 
in the sensitivity analyses of the correlations developed in this study 
(Sections 3.2.3 and 3.3.3). In the HHV-OP and solid yield correlations, 
the two parameters HHVHC and SY are almost linearly dependent on the 
temperature, as seen in Fig. 4. However, the trends are inversely 
dependent on temperature. By combining the generalized correlations 
developed in this paper, it is now possible to find the optimum condi-
tions giving the highest energy yield. Here we illustrate the use of the EY 

correlation to optimize the HTC process conditions for three common 
feedstocks, wheat straw, sewage sludge, and a fruit pomace to produce 
hydrochars with high energy yields. Wheat straw is fairly typical for 
lignocellulosic feedstocks, the quince pomace is typical for food wastes, 
while sewage sludge represents feedstocks with high ash and low 
C-content. The process conditions were selected based on the ranges, 
which we used to develop both SY and HHV correlations. Table S6 (see 
supplementary material) shows the range of process conditions studied 
and the feedstock characteristics for quince pomace of this study, and 
wheat straw and sewage sludge, taken from [27] and [45] respectively. 

To find the optimum conditions, we used the Excel solver to find the 
maximum energy yield by varying the temperature, time and biomass to 
water ratio using the EY method based on the HHV-Operating conditions 
and Solid yield correlations. 

The optimum temperature producing the highest EY varied 
depending on the feedstock (Fig. 4). For both feedstocks, the tempera-
ture increased the HHVHC but simultaneously reduced the SY. Results 
from combining the two correlations to predict EY for wheat straw 
showed that hydrochar produced at a low temperature, 182 ◦C, had the 
highest yield (EY=90.3 %), while for the high ash-containing sewage 
sludge, 216 ◦C was optimal (EY=98.6 %). The process conditions for the 
highest EY were T = 182 ◦C, t = 5 min, and R= 0.3 for wheat straw and 
T = 216 ◦C, t = 509 min, and R= 0.3 for sewage sludge. Theoretically 
changing the process time had little effect on the optimum yield and 
temperature. For example, narrowing the range for t to 30–300 min, 
only slightly changed the optimal points for wheat straw (EY=90.2 % for 
T = 182 ◦C, t = 30 min) and sewage sludge (EY=98.4 % for T = 220 ◦C, 
t = 300 min). The highest EY was calculated for quince as 87.8 % at the 
optimum condition of T = 172 ◦C, t = 5 min and R= 0.3. This optimum 
was experimentally verified with a HTC run at these conditions. Com-
parison of the predicted to the actual measured EY at optimum condition 
shows very good agreement, with an error of 6.9 %. 

4. Conclusions 

In the present study, the intelligent approach of genetic program-
ming (GP) was used as an effective, robust, and smart technique for 
developing explicit correlations to predict the HHVHC and SY of 
hydrochar in the HTC process. Two correlations for HHVHC were derived 
by the GP method using: 1) the elemental composition of the hydrochar 
(only C, O required), and 2) the HHV of the feedstock and HTC operating 
conditions. In addition, a correlation for SY based on operating condi-
tions was obtained which can be used together with the HHVHC corre-
lations to predict the energy yield for different biomasses at HTC 
operating conditions. The correlations were evaluated by additional 
experimental data sets produced in this study for 5 pomaces, and showed 
close agreement with the predicted values. Three combinations of the 
proposed HHVHC and SY correlations reliably predicted the energy yield 
at different process conditions and an algorithm for the use of the 

Table 4 
Three possible combinations of the correlations developed in this study to predict the energy yield, and their corresponding errors compared to the 149 measured 
values from literature and 20 experimental values from this study.  

Combination Energy yield correlations Errors 
Use the HHV-Elemental, and Solid  

yield correlations EY% = (82.96 + 48.95× R − 0.01454× t − 0.0006× T2)×
0.3853 × C of char +

44.98
O of char

0.3853 × C of feed +
44.98

O of feed 

AAE [ %]= 12.0 
ABE [ %]= 2.8 

Use the HHV-OP and Solid yield  
correlations 

EY% = (82.96 + 48.95× R − 0.01454× t − 0.0006× T2)×

HHV0 +
0.51

R + 0.65 × HHV0 − 10.93
+

T + 0.0003 × t × T − 143.3
HHV0

HHV0 

AAE [ %]= 10.6 
ABE [ %]= 3 

Use the HHV-Elemental, HHV-OP  
and Solid yield correlations 

EY% = (82.96 + 48.95× R − 0.01454× t − 0.0006× T2)×

HHV0 +
0.51

R + 0.65 × HHV0 − 10.93
+

T + 0.0003 × t × T − 143.3
HHV0

0.3853 × C of feed +
44.98

O of feed 

AAE [ %]= 13.7 
ABE [ %]= 1.7  
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presented correlations was developed. 
The ease of use of the EY correlation to find the maximum EY based 

on the HHV0 of the biomass and HTC operating conditions was 
demonstrated theoretically for two common feedstocks: wheat straw 
and sewage sludge, and was confirmed experimentally for quince 
pomace. The advantage of this algorithm is that it can be used to predict 
the characteristics of hydrochar, such as HHVHC, solid and energy yields, 
based on feedstock data alone without performing any HTC runs. Since 
HHVHC increases with process severity and SY decreases, the optimal 
HTC process conditions for the highest EY was determined by solving 
both equations simultaneously. Only the feedstock HHV0 is required, 
which can usually be found in the literature or easily analyzed. The EY 
can then be predicted for the desired operating conditions or the oper-
ating conditions can be optimized to achieve the highest EY. This can 
then be checked experimentally at well-selected conditions. Use of this 
method should help reduce the experimental work required to assess the 
economic feasibility of using HTC to convert organic residues into 
hydrochar for fuel applications. 
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