358 research outputs found

    COVID-19: Open-data resources for monitoring, modeling, and forecasting the epidemic

    Get PDF
    We provide an insight into the open-data resources pertinent to the study of the spread of the Covid-19 pandemic and its control. We identify the variables required to analyze fundamental aspects like seasonal behavior, regional mortality rates, and effectiveness of government measures. Open-data resources, along with data-driven methodologies, provide many opportunities to improve the response of the different administrations to the virus. We describe the present limitations and difficulties encountered in most of the open-data resources. To facilitate the access to the main open-data portals and resources, we identify the most relevant institutions, on a global scale, providing Covid-19 information and/or auxiliary variables (demographics, mobility, etc.). We also describe several open resources to access Covid-19 datasets at a country-wide level (i.e., China, Italy, Spain, France, Germany, US, etc.). To facilitate the rapid response to the study of the seasonal behavior of Covid-19, we enumerate the main open resources in terms of weather and climate variables. We also assess the reusability of some representative open-data sources

    Tube-based robust model predictive control for spacecraft proximity operations in the presence of persistent disturbance

    Get PDF
    Rendezvous and Proximity Operations (RPOs) of two autonomous spacecraft have been extensively studied in the past years, taking into account both the strict requirements in terms of spacecraft dynamics variations and the limitations due to the actuation system. In this paper, two different Model Predictive Control (MPC) schemes have been considered to control the spacecraft during the final phase of the rendezvous maneuver in order to ensure mission constraints satisfaction for any modeled disturbance affecting the system. Classical MPC suitably balances stability and computational effort required for online implementation whereas Tube-based Robust MPC represents an appealing strategy to handle disturbances while ensuring robustness. For the robust scheme, the computational effort reduction is ensured adopting a time-varying control law where the feedback gain matrix is evaluated offline, applying a Linear Matrix Inequality approach to the state feedback stabilization criterion. An extensive verification campaign for the performance evaluation and comparison in terms of constraint satisfaction, fuel consumption and computational cost, i.e. CPU time, has been carried out on both a three degrees-of-freedom (DoF) orbital simulator and an experimental testbed composed by two Floating Spacecraft Simulators reproducing a quasi-frictionless motion. Main conclusions are drawn with respect to the mission expectations

    Intuitive geometry and visuospatial working memory in children showing symptoms of nonverbal learning disabilities.

    Get PDF
    Visuospatial working memory (VSWM) and intuitive geometry were examined in two groups aged 11-13, one with children displaying symptoms of nonverbal learning disability (NLD; n = 16), and the other, a control group without learning disabilities (n = 16). The two groups were matched for general verbal abilities, age, gender, and socioeconomic level. The children were presented with simple storage and complex-span tasks involving VSWM and with the intuitive geometry task devised by Dehaene, Izard, Pica, and Spelke (2006 ). Results revealed that the two groups differed in the intuitive geometry task. Differences were particularly evident in Euclidean geometry and in geometrical transformations. Moreover, the performance of NLD children was worse than controls to a larger extent in complex-span than in simple storage tasks, and VSWM differences were able to account for group differences in geometry. Finally, a discriminant function analysis confirmed the crucial role of complex-span tasks involving VSWM in distinguishing between the two groups. Results are discussed with reference to the relationship between VSWM and mathematics difficulties in nonverbal learning disabilities

    An algorithm based on OmniView technology to reconstruct sagittal and coronal planes of the fetal brain from volume datasets acquired by three-dimensional ultrasound

    Get PDF
    To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography

    Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest

    Get PDF
    Nighttime vegetative uptake of carbonyl sulfide (COS) can exist due to the incomplete closure of stomata and the light independence of the enzyme carbonic anhydrase, which complicates the use of COS as a tracer for gross primary productivity (GPP). In this study we derived nighttime COS fluxes in a boreal forest (the SMEAR II station in Hyytiälä, Finland; 61°51′ N, 24°17′ E; 181 m a.s.l.) from June to November 2015 using two different methods: eddy-covariance (EC) measurements (FCOS-EC) and the radon-tracer method (FCOS-Rn). The total nighttime COS fluxes averaged over the whole measurement period were −6.8 ± 2.2 and −7.9 ± 3.8 pmol m−2 s−1 for FCOS-Rn and FCOS-EC, respectively, which is 33–38 % of the average daytime fluxes and 21 % of the total daily COS uptake. The correlation of 222Rn (of which the source is the soil) with COS (average R2  =  0.58) was lower than with CO2 (0.70), suggesting that the main sink of COS is not located at the ground. These observations are supported by soil chamber measurements that show that soil contributes to only 34–40 % of the total nighttime COS uptake. We found a decrease in COS uptake with decreasing nighttime stomatal conductance and increasing vapor-pressure deficit and air temperature, driven by stomatal closure in response to a warm and dry period in August. We also discuss the effect that canopy layer mixing can have on the radon-tracer method and the sensitivity of (FCOS-EC) to atmospheric turbulence. Our results suggest that the nighttime uptake of COS is mainly driven by the tree foliage and is significant in a boreal forest, such that it needs to be taken into account when using COS as a tracer for GPP

    Does growing atmospheric CO2 explain increasing carbon sink in a boreal coniferous forest?

    Get PDF
    The terrestrial net ecosystem productivity (NEP) has increased during the past three decades, but the mechanisms responsible are still unclear. We analyzed 17 years (2001-2017) of eddy-covariance measurements of NEP, evapotranspiration (ET) and light and water use efficiency from a boreal coniferous forest in Southern Finland for trends and inter-annual variability (IAV). The forest was a mean annual carbon sink (252 [+/- 42] gC m-2a-1), and NEP increased at rate +6.4-7.0 gC m-2a-1 (or ca. +2.5% a-1) during the period. This was attributed to the increasing gross-primary productivity GPP and occurred without detectable change in ET. The start of annual carbon uptake period was advanced by 0.7 d a-1, and increase in GPP and NEP outside the main growing season contributed ca. one-third and one-fourth of the annual trend, respectively. Meteorological factors were responsible for the IAV of fluxes but did not explain the long-term trends. The growing season GPP trend was strongest in ample light during the peak growing season. Using a multi-layer ecosystem model, we showed that direct CO2 fertilization effect diminishes when moving from leaf to ecosystem, and only 30-40% of the observed ecosystem GPP increase could be attributed to CO2. The increasing trend in leaf-area index (LAI), stimulated by forest thinning in 2002, was the main driver of the enhanced GPP and NEP of the mid-rotation managed forest. It also compensated for the decrease of mean leaf stomatal conductance with increasing CO2 and LAI, explaining the apparent proportionality between observed GPP and CO2 trends. The results emphasize that attributing trends to their physical and physiological drivers is challenged by strong IAV, and uncertainty of LAI and species composition changes due to the dynamic flux footprint. The results enlighten the underlying mechanisms responsible for the increasing terrestrial carbon uptake in the boreal zone.Peer reviewe

    Evaluation of the LSA-SAF gross primary production product derived from SEVIRI/MSG data (MGPP)

    Get PDF
    The objective of this study is to describe a completely new 10-day gross primary production (GPP) product (MGPP LSA-411) based on data from the geostationary SEVIRI/MSG satellite within the LSA SAF (Land Surface Analysis SAF) as part of the SAF (Satellite Application Facility) network of EUMETSAT. The methodology relies on the Monteith approach. It considers that GPP is proportional to the absorbed photosynthetically active radiation APAR and the proportionality factor is known as the light use efficiency ε. A parameterization of this factor is proposed as the product of a εmax, corresponding to the canopy functioning under optimal conditions, and a coefficient quantifying the reduction of photosynthesis as a consequence of water stress. A three years data record (2015–2017) was used in an assessment against site-level eddy covariance (EC) tower GPP estimates and against other Earth Observation (EO) based GPP products. The site-level comparison indicated that the MGPP product performed better than the other EO based GPP products with 48% of the observations being below the optimal accuracy (absolute error < 1.0 g m−2 day−1) and 75% of these data being below the user requirement threshold (absolute error < 3.0 g m−2 day−1). The largest discrepancies between the MGPP product and the other GPP products were found for forests whereas small differences were observed for the other land cover types. The integration of this GPP product with the ensemble of LSA-SAF MSG products is conducive to meet user needs for a better understanding of ecosystem processes and for improved understanding of anthropogenic impact on ecosystem services.The objective of this study is to describe a completely new 10-day gross primary production (GPP) product (MGPP LSA-411) based on data from the geostationary SEVIRI/MSG satellite within the LSA SAF (Land Surface Analysis SAF) as part of the SAF (Satellite Application Facility) network of EUMETSAT. The methodology relies on the Monteith approach. It considers that GPP is proportional to the absorbed photosynthetically active radiation APAR and the proportionality factor is known as the light use efficiency epsilon. A parameterization of this factor is proposed as the product of a epsilon(max), corresponding to the canopy functioning under optimal conditions, and a coefficient quantifying the reduction of photosynthesis as a consequence of water stress. A three years data record (2015-2017) was used in an assessment against site-level eddy covariance (EC) tower GPP estimates and against other Earth Observation (EO) based GPP products. The site-level comparison indicated that the MGPP product performed better than the other EO based GPP products with 48% of the observations being below the optimal accuracy (absolute error <1.0 g m(-2) day(-1)) and 75% of these data being below the user requirement threshold (absolute error <3.0 g m(-2) day(-1)). The largest discrepancies between the MGPP product and the other GPP products were found for forests whereas small differences were observed for the other land cover types. The integration of this GPP product with the ensemble of LSA-SAF MSG products is conducive to meet user needs for a better understanding of ecosystem processes and for improved understanding of anthropogenic impact on ecosystem services.Peer reviewe

    An Italian foreign policy of religious engagement: challenges and prospects

    Get PDF
    A new awareness of the role of religion in international relations has started to inform concrete policy discussions in several Western Ministries of Foreign Affairs under the heading of ‘religious engagement’ in foreign policy. Italy is no exception, but as the country which hosts the Holy See, it represents a special case. As the approach to religion found in the historical record of Italian foreign policy shows, Italy has a comparative advantage and could well develop a unique model of religious engagement by strengthening the central structures involved in religious matters and foreign policy, as well as by using the vast network of Rome-based religious non-state actors as a forum of consultation and policy advice
    • …
    corecore