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Rendezvous and Proximity Operations (RPOs) of two autonomous spacecraft have been extensively 
studied in the past years, taking into account both the strict requirements in terms of spacecraft dynamics 
variations and the limitations due to the actuation system. In this paper, two different Model Predictive 
Control (MPC) schemes have been considered to control the spacecraft during the final phase of the 
rendezvous maneuver in order to ensure mission constraints satisfaction for any modeled disturbance 
affecting the system. Classical MPC suitably balances stability and computational effort required for online 
implementation whereas Tube-based Robust MPC represents an appealing strategy to handle disturbances 
while ensuring robustness. For the robust scheme, the computational effort reduction is ensured adopting 
a time-varying control law where the feedback gain matrix is evaluated offline, applying a Linear Matrix 
Inequality approach to the state feedback stabilization criterion. An extensive verification campaign for 
the performance evaluation and comparison in terms of constraint satisfaction, fuel consumption and 
computational cost, i.e. CPU time, has been carried out on both a three degrees-of-freedom (DoF) orbital 
simulator and an experimental testbed composed by two Floating Spacecraft Simulators reproducing a 
quasi-frictionless motion. Main conclusions are drawn with respect to the mission expectations.

© 2018 Elsevier Masson SAS. All rights reserved.
1. Introduction

Automated rendezvous and docking (RVD) missions have been 
widely studied in the last ten years. During these missions, con-
trolled trajectories, in which a Chaser spacecraft tries to reach and 
dock a Target spacecraft, are guaranteed by a control system, able 
to handle uncertainties and external environment disturbances. 
Different control techniques have been proposed in literature, in-
cluding feedback-linearization-based approach [1], Riccati equation 
techniques [2], sliding-mode control (SMC) [3], and other control 
setups in [4,5]. In [1] the problem of motion synchronization of 
free-flying robotic spacecraft and serviceable floating objects in 
space is considered, but a limitation of this approach is that the 
linear system can be different from the nonlinear one, due to the 
cancellation of nonlinearities. The Riccati equation techniques (as 
in [2]) are simple, numerically stable and competitive in compu-
tational effort with other known methods. However, only small 
parametric uncertainties are included. In [3] SMC strategies are 
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proposed for thruster control, even if it is deemed to lead to ex-
cessive fuel consumption, due to switching on/off thrusters at high 
frequency. Even if a fuel-efficient algorithm is proposed, a high 
consumption is verified to track the docking port. As clearly ex-
plained in [4], a model predictive control approach for spacecraft 
proximity maneuvering which could effectively handle the con-
straints on thrust magnitude, line-of-sight, and approach velocity, 
and can be more effective than other controllers in terms of fuel 
consumption.

For this reason, in this research, special attention has been re-
served to the adoption of MPC, for its ability to deal with the 
constraints that typically characterize this maneuver, both in terms 
of relative position and velocity, as well as actuation system limi-
tations. The approach proposed here moves along the lines of pre-
vious works employing MPC schemes for RVD. A Linear Quadratic 
MPC (LQMPC) has been adopted to enforce thrust magnitude lim-
itation, line of sight (LOS) constraints, and velocity constraints for 
soft docking in [6]. In [7], a low-complexity MPC scheme for three 
degree-of-freedom (DoF) spacecraft system is developed for the 
low-thrust rendezvous and proximity operations.

However, in all of these approaches, orbital perturbations, dis-
turbances, and model errors are not taken into account. In [8], 
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the improved performance of a robust MPC in the presence of 
disturbances, compared with a classical one, are highlighted solv-
ing the spacecraft rendezvous problem. In the last years, focusing 
on robust approach, a new appealing approach has been intro-
duced, called Tube-based Robust MPC (TRMPC), which focuses on 
two main goals: (i) the robustness to additive disturbances and 
(ii) the computational efficiency of a classical MPC. Moreover, this 
algorithm is split in two parts: (i) an offline evaluation of the con-
straints to ensure the uncertain future trajectories lie in sequence 
of sets, known as tubes, and (ii) the online MPC scheme applied to 
the nominal trajectories, representing the center of the tube itself 
as in [9].

The main ideas of this paper are to evaluate the performance 
of a robust MPC controller, both in simulations and on an exper-
imental setup, and to demonstrate the real-time effectiveness of 
the proposed robust approach. Moreover, this proposed MPC con-
troller is able to handle uncertainties due to external disturbances 
and additive noise, according to the recent trend in literature [10]. 
Starting from the approach proposed in [11], our idea is to evalu-
ate for the first time the performance of this controller within the 
space rendezvous scenario both in simulation, for a three degree-
of-freedom (DoF) orbital simulator, and in an experimental setup, 
i.e. in a three DoF air-bearing spacecraft testbed. Hence, a real-
time implementation of the TRMPC approach is here proposed to 
test the effectiveness of the controller on board.

In order to reach a reasonable computational effort for the ro-
bust approach, a time-varying control law is adopted where the 
feedback gain matrix is evaluated offline. A Linear Matrix Inequal-
ities (LMI) approach is applied to the state feedback stabilization 
criterion for the stability analysis and the evaluation of the feed-
back matrix. As explained in [12] and in [13], the proposed method 
improves the computational efficiency of a robust MPC even us-
ing low-thrust propulsion, typically adopted in the final phase of 
RVD maneuver, as in the proposed case-study. Furthermore, due to 
the presence of parametric physical uncertainties and discrepan-
cies between the mathematical model and the actual dynamics of 
the physical system in operation, as non linearities and neglected 
high-order dynamics, the LMI approach is able to reduce the com-
putational effort required by other robust controller, guaranteeing 
the stability of the system and improving real-time implementa-
tion feasibility. The modeled uncertainties are related to the model 
linearization of the Hill–Clohessy–Wiltshire (HCW) equations, in 
which the coupling between the position and speed variables and 
the quadratic terms related to the distance between the Target 
and the chaser are neglected. In detail, all the terms o(ρ2/R2)

are not considered, with ρ the distance between the two space-
craft and R the distance between the Target and the Earth [14]. 
Moreover, the uncertainties of the control matrix are related to 
the mass and inertia variation due to the fuel consumption. The 
LMI approach applied to the Edge Theorem, generalization of the 
Kharitonov Theorem, allows the offline definition of the feedback 
gain matrix, which is adopted to define the time-varying control 
law. Further information of both Edge Theorem and Kharitonov 
Theorem can be found in [16]. Finally, the robust TRMPC is com-
pared with a classical LQMPC in terms of computational cost, fuel 
consumption, and constraints satisfaction when the system is af-
fected by persistent bounded uncertainties. The LQMPC, proposed 
in this paper, was deeply validated in [15], in which a LQMPC and 
inverse dynamics in the virtual domain (IDVD) guidance methods 
are combined.

An extensive verification campaign, both in simulation and in 
an experimental testbed, has been accomplished to validate the 
performance of the TRMPC. Its compatibility for real-time imple-
mentation and constraint satisfaction has been verified when the 
system is affected by bounded additive disturbances. As said be-
fore, the simulations are carried out on a three DoF orbital simu-
lator. Instead, the experimental verification has been carried out 
using two spacecraft that float over a polished granite mono-
lith surface reproducing a quasi-frictionless motion in Spacecraft 
Robotics Laboratory at the Naval Postgraduate School [17].

The paper is organized as follows. In Section 2 and 3 the model 
setup, both of the simulation environment (three DoF) and of the 
experimental testbed are presented. The control objective and the 
system dynamics are explained in detail in Section 4. In Section 5
the MPC design is described, focusing on the theory of the TRMPC 
and how the concept of Tube is introduced and defined, accord-
ing to a constraint tightening approach. The simulation results 
obtained with the three DoF orbital simulator are presented in 
Section 6 while experimental results are described in Section 7, 
together with a comparison of the performance of LQMPC and 
TRMPC. Main conclusions are drawn in Section 8.

Notation: The notation employed is standard. Blackboard bold-
face letters (e.g., X) denote sets. Bold letters, e.g., uk =
[u0|k · · · uN−1|k], are used to denote the stack vector of N predicted 
values. Positive (semi)definite matrices A are denoted as A � 0
(A � 0), whereas negative (semi)definite matrices are denoted as 
A ≺ 0 (A � 0). The set I≥0 denotes the positive integers, includ-
ing 0. We use xk for the (measured) state at time k and xi|k for the 
state predicted i steps ahead at time k. A ⊕ B and A 	 B denotes 
the Minkowski sum and Pontryagin set difference, respectively.

2. Model of the translational three DoF relative orbital maneuver

The nominal relative motion of the two spacecraft in neigh-
boring orbits can be described through HCW linearized equa-
tions in the typical continuous-time state-space formulation as 
ẋ = Ax + Bu, where x = [x, y, z, ̇x, ẏ, ̇z] is the state vector repre-
senting the 3-position and 3-velocity components of the Chaser 
with respect to the Target in the local coordinate system (Local 
Vertical Local Horizontal (LVLH) frame), u = [Fx, F y, F z] is the con-
trol vector, expressed in the body reference frame, represented by 
the control force components applied to the spacecraft through the 
actuation system. As described in [18], the LVLH coordinate system 
is centered on the center of mass (CoM) of the Target and the axes 
are defined as follows: the X axis (Vbar ) is in the direction of the 
orbital velocity vector, the Y axis (Hbar ) is in the opposite direc-
tion of the angular momentum vector of the orbit, while the Z
axis (Rbar ) is radial from the spacecraft center of mass to the CoM 
Earth. The Chaser has the goal to arrive in the proximity of the Tar-
get vehicle, considering a V-bar approach within a cone corridor. 
A and B , the state and control matrices respectively, are defined 
as in [19] as a function of the angular velocity of the orbit (known 
and constant) with respect to the inertial frame ω0 and the wet 
mass of the Chaser mC V .

Due to the space environment, external disturbances in terms of 
forces and moments, such as the J2, the gravity gradient, and the 
solar radiation pressure, could affect the vehicle performance and 
drive the chaser to violate the constraints. If these additive noises 
are included in the spacecraft dynamics, the following continuous-
time uncertain system shall be considered

ẋ = Ax + Bu + B w w, (1)

where w is the vector of persistent noise, mainly related to the ex-
ternal environment and can be modeled as a random and bounded 
noise. In particular, the disturbance sequence is the realization of a 
stochastic process where w ∈ W is a random variable with known 
distribution, and the set W is a compact and convex set, contain-
ing the origin in its interior. Then, a discrete-time representation 
of system (1) is derived as follows

xk+1 = Adxk + Bduk + B w wk, (2)
d
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Fig. 1. Cone approach for 3DoF Orbital Simulator. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

where Ad, Bd , and B wd are the discrete matrices corresponding 
to the continuous ones in (1). A goal of the control is to drive 
the system to the docking position, compliant with the constraints 
satisfaction in terms of position and velocity during the proximity 
maneuver. In a typical cone-approach maneuver (see Fig. 1), the 
Chaser should lie within the projection of the approach cone in 
the x − z orbital plane. As shown in Fig. 1(a), the Chaser starts the 
rendezvous maneuver at x = xi and ends up to x = x f , where the 
docking phase begins. The angle θ defines the approaching trun-
cated cone and is a function of the cone bases radius, i.e. the initial 
one ri and r f . In Fig. 1(b), the constraints in the y − z plane are 
represented with respect to the section A − A identified in Fig. 1(a). 
As we can notice, the constraint set for the position along y is 
fixed and equal to [ymin, ymax] = [−r f , r f ] whereas, in compliance 
with Fig. 1(a), the constraints along z are time-varying, since the 
radius of the cone decreases from ri at z = z(xi) (black dashed 
rectangle) to r f at z = z(x f ) (green dashed rectangle).
Fig. 2. NPS-POSEIDYN testbed with the Vicon motion capture cameras, FSSs, and 
granite monolith in the Spacecraft Robotics Laboratory at the Naval Postgraduate 
School. The Target FSS is on the right and the Chaser FSS is on the left.

The related position boundaries can be expressed as follows

xi ≤ x ≤ x f ,

−r f ≤ y ≤ r f ,

|z| ≤ (x f − x) tan θ − (ri − r f ),

whereas the velocity constraints are defined in order to bound 
each velocity components norm to be less or equal to the maxi-
mum one, defined for the maneuver. Hard constraints are consid-
ered also on the input, in order to be compliant with the saturation 
of the actuation system. The input constraint set is defined accord-
ing to the maximum level of thrust that the actuators can provide.

3. Model of the planar experimental testbed

The two controllers, the TRMPC as well as the LQMPC for com-
parison reasons, are experimentally tested on the Naval Postgrad-
uate School (NPS) Proximity Operation of Spacecraft: Experimental 
hardware-In-the-loop DYNamic simulator (POSEIDYN) testbed. The 
NPS-POSEIDYN testbed consists of Floating Spacecraft Simulators 
(FSS), a polished granite monolith, a Vicon motion capture system, 
and a ground station computer. Fig. 2 shows an overview of the 
testbed.

The floating surface is a 15 ton, 4-by-4 meter granite monolith, 
with a planar accuracy of ±0.0127 mm and a horizontal leveling 
accuracy of less than 0.01 deg. The FSSs float over the granite sur-
face via three flat air bearings. The quasi-frictionless environment 
with the low residual acceleration of the FSS emulates the en-
vironment in space. The FSS has eight cold gas thrusters fed by 
compressed air from an on-board tank [20]. Using the on-board 
computer the FSS is able to perform real-time computation of 
guidance and control algorithms. The Vicon motion capture system, 
composed of ten overhead cameras that track reflectors mounted 
on the FSS, provides accurate position and orientation data. These 
data are streamed to the FSS using a Wi-Fi connection. They are 
then augmented with angular velocity measurements provided by 
an on-board fiber-optic gyroscope. A discrete Kalman filter pro-
cesses the data and provides a full state estimate. Detailed descrip-
tion of the NPS-POSEIDYN testbed can be found in [17].

The FSS dynamic model consists of three double integrators, 
two translational and one rotational DoF. The discrete-time dy-
namics in the presence of additive disturbances is described in a 
state-space formulation as (1), with the discrete-time state, control, 
and disturbance matrices corresponding to the continuous ones re-
ported below
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Fig. 3. Cone approach for 3DoF NPS-POSEIDYN testbed.

A =
[

03×3 I3
03×3 03×3

]
, B =

⎡
⎢⎢⎢⎢⎣

03×3
1
m 0 0

0 1
m 0

0 0 1
Iz

⎤
⎥⎥⎥⎥⎦ , B w = I6, (3)

where m and Iz are the mass and moment of inertia about the 
vertical axis of the FSS, respectively.

The Chaser FSS is constrained to lie within a cone (see Fig. 3) 
and the related boundaries are translated in position constraints as

xT ≤ x ≤ xT + xi

√
2 cos(

π

4
± φ)/ cosφ,

yT ≤ y ≤ yT + xi

√
2 sin(

π

4
± φ)/ cosφ,

where φ is the cone angle and (xT , yT ) are the final position of 
the FSS Chaser, corresponding to the FSS Target position. Bounded 
constraints are also introduced for the velocity components and 
the relative attitude, as described in Section 5.

The polytope set for the additive disturbance has to be defined. 
Hence, the persistent uncertainty has been evaluated first through 
simulations, and then the results have been validated experimen-
tally with respect to the testbed environment. According to the 
specifications of the cold gas thrusters, a random error related to 
the thrust magnitude has been taken into account, considering a 
±10% error over the maximum thrust level available. Then, the 
same mission profile has been simulated two times. First, both the 
external environment and the actuation system have been consid-
ered ideal, i.e., not affected by disturbance. Next, the simulation 
has been repeated considering noise from the environment and 
random error affecting the thrusters. Hence, the states evolutions 
have been compared, in order to size the maximum disturbance 
level that can affect the system. Then, these results have been later 
validated with the characterization of the testbed, performing sev-
eral experiments, considering same initial conditions.

4. System dynamics and control objective

Let consider a generic model of the form (2), where the noise 
is a realization of a stochastic process, each one an independent 
and identically distributed (i.i.d.), zero-mean random variable, with 
bounded and convex support W ∈ R

n , containing the origin in its 
interior.

The system is subject to hard constraints on both the state and 
input of the form
x ∈ X, u ∈U, (4)

where X and U are polytope.
To solve the control problem, a robust MPC algorithm is consid-

ered [11], repeatedly solving the following optimal control problem 
where the finite horizon quadratic cost J N(x, u) to be minimized 
at the current time k is

J N(xk,uk) =
N−1∑
i=0

(xT
i|k Q xi|k + uT

i|k Rui|k) + xT
N|k P xN|k, (5)

where Q ∈ R
n×n , Q � 0, R ∈ R

m×m , R � 0, and P is the solution 
of the discrete algebraic Riccati equation.

Due to the presence of a bounded and persistent unknown dis-
turbance w, the state of the system

xi|k = zi|k + ei|k (6)

can be split into a nominal part, zi|k , and an error part, ei|k , which 
represents the deviation of the actual state xi|k with respect to the 
nominal one. Applying the following feedback policy

ui|k = vi|k + K (xi|k − zi|k), (7)

where the matrix K is chosen so that AK = A + B K is Schur sta-
ble, then the corresponding nominal and error dynamics can be 
described respectively by

zi+1|k = Azi|k + Bvi|k, z0|k = x0|k, (8)

ei+1|k = AK ei|k + B w wi|k, e0|k = 0. (9)

Hence, the finite horizon optimal quadratic cost (5) can be re-
defined in terms of nominal state zk and control input vk as

J N(zk,vk) =
N−1∑
i=0

(zT
i|k Q zi|k + vT

i|k Rvi|k) + zT
N|k P zN|k, (10)

and the related finite horizon optimal control problem can be re-
formulated as follows.

Definition 1 (Nominal finite horizon optimal control problem). Given 
the nominal system dynamics (8), cost (10) and nominal con-
straints set Z, V, and Z f , the nominal Robust MPC finite horizon 
optimization problem is

min
v

J N(zk,vk) (11a)

s.t.zi+1|k = Azi|k + Bvi|k, z0|k = xk,

zi|k ∈ Z, i ∈ [1, N],
vi|k ∈V, i ∈ [0, N − 1],
zN|k ∈ Z f .

(11b)

The solution of (11) is the optimal nominal control sequence 
v∗

0|k(zk) = [v∗
0|k(0; zk), · · · , v∗

T −1|k(T − 1; zk)] and the first control 
action, i.e., κ̃N (zk) := v∗

0|k(0; zk), represents the optimal control to 
be applied. The correspondent control applied on the uncertain 
system, according to the control policy adopted, is

κN(xk, zk) = κ̃N(zk) + K (xk − zk). (12)

The composite close-loop system then satisfies

xi+1|k = Axi|k + BκN(i,xk, zk) + B w wi|k,
z = Az + Bκ̃ (i, z ).

(13)

i+1|k i|k N k
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For the TRMPC approach, considering discrete-time Linear Time 
Invariant (LTI) formulation of the system and the control policy de-
fined in Eq. (7), the K matrix is defined to stabilize the system. The 
stability analysis has been performed considering the application 
of the LMI approach to the state feedback stabilization criterion, 
applying the definition of Schur stability to the closed-loop system

xi+1|k = (A + B K )xi|k + Bvi|k + B w wi|k, (14)

Hence, the satisfaction of the following condition aims to define 
the feedback gain matrix K that stabilize the system

(A + B K )T P̂ (A + B K ) − P̂ ≺ 0, P̂ � 0. (15)

Adopting a feedback linearization control strategy implies the def-
inition of a state feedback control law able to overcome system 
nonlinearities and, at the same time, to impose some desired lin-
ear dynamics. On the other hand, the control scheme success 
is strongly dependent on how much the model description of 
the system under consideration fit with the real physical system 
in operation. Hence, linearizing the system dynamics means in-
troducing in the plant parametric uncertainties representing the 
discrepancies between the mathematical model and the actual 
dynamics, in terms of neglected nonlinearities, unmodeled high-
frequency dynamics, and deliberate reduced-order models. Fur-
thermore, additional parametric uncertainties are represented by 
system-parameters variations due to environmental and/or physi-
cal changes. All these errors introduced in the model have to be 
considered since they might affect the performance as well as 
the stability of the control system. Therefor, a stability analysis 
must be performed in which parametric uncertainties related to 
the application studied are explicitly considered. In this work, the 
stability analysis has been evaluated through an LMI approach ap-
plied to the well-known Edge Theorem, which is an extension of 
Karitonov’s theorem ([16]) and states that the stability of a poly-
tope of polynomials can be guaranteed by the stability of its one-
dimensional exposed edge polynomials [21]. The Edge Theorem 
takes into account the dependence of the polynomial coefficients 
on the uncertain parameters and the coefficients of the polyno-
mials are affine functions of the uncertain vector q = [q1, ..., ql], 
bounded in the hyper-rectangle Bq defined by

Bq :=
{

q ∈ R
l | qi ∈ [q−

i ,q+
i ], i = 1, ..., l

}
. (16)

Theorem 1 (Edge Theorem). Consider the polytope of polynomials P̂ , 
defined as

P̃ = {
p(s,q) = a0(q) + a1(q)s + ... + an−1(q)sn−1 + sn

: ai(q) = ai0 +
l∑

k=1

aik qk,q ∈ Bq, i = 0, ...,n − 1

}
.

(17)

The family P̃ is Hurwitz if and only if all edges of P̃ are Hurwitz (see [22]). 
Starting from the discrete nominal state and control matrices, Ad and 
Bd, the corresponding uncertain matrices are defined as A−

d = Ad(q−), 
A+

d = Ad(q+), B−
d = Bd(q−), and B+

d = Bd(q+).

Then, a system of four LMI is defined to solve a joint stabi-
lization problem based on the Edge Theorem and Lyapunov sta-
bility condition, coupling the uncertain matrices defined before. 
The feedback matrix K , used to define a time-varying control law, 
is derived through this approach and ensures the stability of the 
system for every modeled uncertainty that may affect the system 
itself.
In this work, the adopted linearized dynamics of the Chaser 
spacecraft relative to the Target vehicle during the final approach 
of the rendezvous maneuver has been derived by Clohessy and 
Wiltshire in [14], starting from the nonlinear equations for the 
restricted three-body problem and considering for the both the 
spacecraft a reference circular orbit around a master body. Con-
sidering the two spacecraft mass infinitesimal with respect to the 
mass of the main body and defining ρ = ρiρ and r1 = r1 iξ as the 
position vectors of the Chaser and the Target spacecraft respec-
tively, and with r = r iξ the vectorial sum of the two positions, 
r = ρ + r1, the equations of motion of the Chaser spacecraft can be 
rewritten as

d2ρ
dt2

+ 2ω × dρ
dt

+ ω × [ω × (ρ + r1)] = −ω2r3
1

r3
r, (18)

where ω is the orbital angular rate. This differential equation 
presents nonlinearities due to the term 1/r3. As described in [14], 
the use of a Taylor Series expansion allows to obtain a linear 
equation if we ignore the higher order terms, i.e. O(ρ2/r2

1) as 
r3

1
r3 = 1 − 3 iξ · iρ

ρ
r1

+ O(
ρ2

r2
1
). Then, Eq. (18) reduces to

d2ρ
dt2

+ 2ω × dρ

dt
+ ω × (ω × ρ) = −ω2ρ + 3ω2(iξ · ρ)iξ + O(ρ2).

(19)

We finally get the linearized differential equation for the motion 
of the Chaser relative to the Target spacecraft as

d2ρ
dt2

+ 2ω × dρ
dt

= −ω2ζ iζ + 3ω2ξ(iξ + O(ρ2). (20)

Ignoring the O(ρ2) and expressing the position vector in a more 
convenient way as

ρ ≡ r = x iθ + z ir − y iy, ir1 = ir ω = −ω iy, (21)

with x in the direction of the motion iθ , z in the radial direction 
ir and iy = iθ × ir normal to the orbital plane. Then, we can obtain 
the scalar form of Eq. (19), which is the well-known HCW Equa-
tion. Hence, the parametric uncertainty introduced in the model 
are of the same order of O(ρ2/r2

1) and O(ρ2). When external forces 
are acting on the system, in this case due to the correction actions 
actuated by the thrusters (Fx, F y, F z) of the AOCS subsystem, we 
have

d2x

dt2
− 2ω

dz

dt
= Fx

mC V
,

d2 y

dt2
+ ω2 y = F y

mC V
,

d2z

dt2
+ 2ω

dx

dt
− 3ω2z = F z

mC V
.

(22)

Therefore, additional uncertainties have been introduced in terms 
of minimal physical changes of the Chaser spacecraft mass mC V
during the maneuver as well as environmental impact on the or-
bital angular velocity ω. Furthermore, for what concern the ex-
perimental setup, additional simplifications have been introduced, 
since the Chaser FSS dynamics is represented by only three double 
integrators, ignoring the coupling between the two translational 
DoFs and the angular velocity, and the inertia with respect to the 
axis normal to the motion is considered for the rotational dynam-
ics, implying new physical uncertainties. All these errors have been 
taken into account for the stability analysis and the evaluation of 
the feedback gain matrix, which has been derived offline, reducing 
the computational effort usually required to robust controllers and 
allowing the real-time implementation.
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5. Tube-based robust MPC approach

5.1. Definition of tube-based approach

In order to robustly satisfy the mission constraints, they are 
tightened to allow the trajectories of the uncertain system, affected 
by disturbance, to lie in a tube centered on the nominal one, where 
each trajectory is related to a particular realization of the uncer-
tainty at each time step k. In this Section, the derivation of the 
nominal state, input, and terminal constraints set Z, V, and Z f are 
described according to the approach proposed in [11], so that the 
constraints (4) of the system (2) are satisfied for every realization 
of the disturbance sequence w, by suitable design of the tube.

Let define S K (∞) := ∑∞
j=0 A j

KW, the uncertain set of the error 
ei|k , as the minimal robust positive invariant set for xi+1|k = Axi|k +
B w wi|k , w ∈W. Then, the state and control constraints are satisfied 
if

zi|k ∈X	 S K (∞),

vi|k ∈U	 K S K (∞).
(23)

Satisfaction of the terminal constraint at time instant N for the 
uncertain system (2) is ensured if the nominal system satisfies the 
tighter constraint

zN ∈ Z f ⊆ X f − S K (∞), Z f ⊆ Z. (24)

These assertions only make sense if the disturbance set W is suf-
ficiently small to satisfy the following Assumption 1, as defined in 
[11].

Assumption 1 (Restricted disturbances for constraints satisfaction). 
S K ⊂ X and K S K ⊂U.

The next step consists in the definition of a robust positively 
invariant set S K for (9) to obtain the tighter constraints acting on 
the nominal system. Then the constraints are considered for the 
TRMPC problem. Several methods can be adopted, as proposed in 
[23], [24], and [25]. Once the uncertainty set W is evaluated, an 
inner approximation of the nominal constraint set is defined, ac-
cording to the following strategy presented in [11]:

1. Consider a single linear constraint as

X= {
xi|k ∈R

n | axi|k ≤ b
}
.

2. Since xi|k = zi|k + ei|k for all i ∈ I≥0, where ei|k ∈ S K (∞), it 
follows that

azi|k ≤ b − max
{

aei|k | ei|k ∈ S K (∞)
} = b − 
∞.

3. Compute an upper approximation of 
∞ as


N = max
{

a
∑N−1

i=0 Ai
K wi|k | wi|k ∈W

}
.

4. Considering the feedback control matrix K and the prediction 
horizon N , AN

K ∈ αW with α ∈ (0, 1). We then obtain


∞ ≤ (1 − α)−1
N .

5. Hence, the constraint set Z can be defined as

Z := {
zi|k ∈R

n | azi|k ≤ b − (1 − α)−1
N
}
.

Analogous procedure has been used to obtain a suitable control 
constraint set V.
Algorithm 1 Constraint tightening.
1: procedure Constraint Tightening

2: Define X, U, and W
3: Set α ∈ (0, 1)

4: Evaluate N subject to AN
K ∈ αW

5: Compute 
N

6: Evaluate Z, V and Z f

7: end procedure

Algorithm 2 Feedback gain evaluation.
1: procedure
2: Define Bq as in (16)
3: Build (Ai , B i)q∈supp(Bq )

4: for each i-th vertex (Ai , B i) do
5: Build (Ai , B i)q∈supp(Bq )

6: sysi = X AT
i + AT

i X − Y T BT
i − BT

i Y
7: end for
8: Solve [X � 0, sysi ≺ 0]
9: Get X and Y

10: Get K = Y X−1

11: end procedure

Algorithm 3 TRMPC algorithm.
1: procedure
2: Set N
3: At current time k for i = 0, evaluate xi=0|k = xk

4: for i = 0 : N − 1 do
5: Set zi=0|k = z0 = xk

6: Solve (11)
7: end for
8: Get v0(z0)

9: Get v0(0; z0) and evaluate zk+1 applying v0(0; z0) on Eq. (8)
10: Evaluate uk according to Eq. (7), then evaluate xk+1 applying uk on Eq. (2)
11: end procedure

5.2. Tube-based robust MPC algorithm

Once the tube is defined in order to contain all the trajecto-
ries of an uncertain system subject to additive disturbances, an 
optimal control problem can be formulated. The solution of the 
problem provides a control policy that minimizes a quadratic cost. 
The solution also ensures that the state and control constraints are 
satisfied for all admissible bounded disturbance sequences. The ap-
plication of TRMPC guarantees that the trajectory evolved from the 
initial state lies within a robust positive invariant set, defined to 
satisfy state and control constraints acting on the system, allowing 
to control the uncertain system (2) by constraining its trajectory to 
lie within a tube whose center is the solution of the nominal sys-
tem (8) obtained applying the implicit MPC control law κ̃N (zk). The 
final TRMPC algorithm can be divided into two parts: (i) an offline 
computation of the feedback matrix K , which stabilizes the system 
(described in detail in Section 4), and of the tightened constraints 
set Z and V, as shown in Algorithm 1 and Algorithm 2, and (ii) 
the repeated online optimization problem, i.e., Algorithms 3.

6. Simulation results

The LQMPC approach has been already validated in a simula-
tion environment, as described in [6], where it has been shown 
how this approach can effectively handle various constraints aris-
ing in rendezvous and proximity operations in the orbital plane. 
ESA’s ORCSAT project [26] has investigated the adoption of LQMPC 
on the Mars Sampling Return capture scenario. Moreover, LQMPC 
has already been tested in space by PRISMA project to demonstrate 
Guidance, Navigation, and Control (GNC) strategies for spacecraft 
formation flying and rendezvous, considering a classical MPC con-
trol for fuel saving based on orbit propagation [27]. On the other 
hand, these studies do not consider the robustness of the controller 
to persisting disturbances due to several sources that can strongly 
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Table 1
Cone geometry and mis-
sion scenario definition.

Parameter Value

xi 350 [m]
x f 0 [m]
ri 7 [m]
r f 0.1 [m]
θ 10 [deg]

Table 2
3DoF state and control tightened con-
straints.

Parameter Nominal system value

Fmax [−0.99,0.99] [N]
(xmin, xmax) [−349.97,4.97] [m]
(zmin, zmax) [−6.97,6.97] [m]
(ymin, ymax) [−0.07,0.07] [m]
V x, V y , V z [−0.12,0.12] [m/s]

affect the spacecraft and may bring the chaser to collide with the 
target.

In [8], both classical and robust MPC (not TRMPC) have been 
adopted to solve the problem of RVD of spacecraft, using the 
HCW model where additive disturbances affect the system dur-
ing the maneuver. The results show the classical MPC is not able 
to handle disturbances. Hence, in this section the simulation re-
sults related to the application of an LQMPC in the presence of 
persistent disturbances will not be reported. On the other hand, 
a different robust approach with respect to [8], i.e., TRMPC ap-
proach, has been implemented into a MATLAB/Simulink three DoF 
orbital simulator to show how the chosen controller is able to han-
dle the persisting uncertainties due to the external environment 
and still robustly satisfy the mission and system constraints. In 
this Section, we briefly show the results related to the applica-
tion of the TRMPC approach to the three DoF system translational 
dynamics. The system of the form of (2) is affected by persis-
tent bounded disturbances, related to three main causes: (i) Earth-
oblateness resulting in an asymmetric gravity potential J2 term 
and a gravity gradient effect; (ii) drag due to the residual at-
mosphere; (iii) solar radiation pressure. The other environmental 
effects due to third-bodies or disturbances due to thrusters plum 
interactions are neglected because of the lower impact on the sys-
tem. Hence, the set of additive disturbance considered is defined as 
w ∈ W = {

w | ||w||∞ ≤ 10−2
}

. The system is subject to hard con-
straints on both states and inputs. The uncertain sets have been 
introduced in Section 2. The cone geometry and the defining pa-
rameters are reported in Table 1, whereas the tightened constraints 
are reported in Table 2.

The Chaser vehicle is modeled as a cubic-shape spacecraft (1.2 
m side) with a mass of 600 kg and equipped with six thrusters, 
two along each body axis and in two different orientation, each 
with a specific impulse of Isp = 220 s and a maximum thrust of 
Fmax = 1 N. The reference scenario sees the Chaser and the Tar-
get in a Low Earth Orbit with an altitude of 650 km, at an initial 
relative distance of −350 m along the V-bar axis. Moreover, the 
active vehicle has a residual velocity of 0.05 m/s with respect to 
the passive one.

The diagonal matrices Q and R are set to 102 × I6 and I3, re-
spectively, while P is the solution of the discrete Algebraic Riccati 
equation. Furthermore, simulation settings are listed in Table 3.

To show the effectiveness of the TRMPC approach for the last 
phase of a space rendezvous maneuver, a set of simulations consid-
ering different Initial Conditions (ICs) within the entry cone have 
been performed considering a minus V-bar approach, in order to 
Table 3
3DoF MPC design parameters 
and model initialization settings.

Parameter Value

MPC sample time 1 [s]
Prediction horizon 10
System sample time 1 [s]

Fig. 4. TRMPC nominal simulated trajectories for different initial conditions.

Fig. 5. TRMPC uncertain simulated trajectories for different initial conditions.

highlight the performance of the controller for each initial state 
vector within the state constraint set X. Fig. 4 and Fig. 5 represent 
the 3D nominal and disturbed trajectories, respectively. We can see 
how the mission constraints in terms of position are satisfied, both 
within the cone in the orbital plane and the out-of-plane corridor. 
Each trajectory is driven to converge to the V-bar axis, accord-
ing to a decreasing profile of the velocity along the approaching 
axis and satisfying the terminal constraints of null residual veloc-
ity between the spacecraft. Moreover, comparing the two figures, 
it is clear how the effect of disturbances is perceived strongly in 
the last part of the maneuver, but also in this phase, the proper 
definition of tightened constraints ensure the mission and system 
constraints satisfaction in the presence of additive disturbances, 
within the prescribed final safe region.

7. Experimental results

7.1. Scenario initialization

In this section, the results related to the application of TRMPC 
to the FSS system dynamics are here presented, together with the 
results obtained applying the LQMPC scheme to compare the per-
formance of the two controllers in the presence of persistent dis-
turbance. The experimental setup is composed by two FSSs, one 
moving representing the Chaser and the other one fixed, the Tar-
get, each one with a mass of 9.966 kg and equipped with a set 
of eight thrusters of 0.15 N on-board, controlled via a Sigma-Delta 
Modulation method [28]. First, the MATLAB/Simulink based numer-
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Table 4
State and control constraints.

Parameter Uncertain value Nominal value

Fmax ±0.15 [N] ±0.0927 [N]
φ 10 [deg] 8 [deg]
θ ±2π [rad] ±6.2496 [rad]
V x, V y ±0.2 [m/s] ±0.1777 [m/s]
θ̇ ±0.1 [rad/s] ±0.0777 [rad/s]

Table 5
FSS MPC design parameters and model ini-
tialization settings.

Parameter Value

MPC sample time 3 [s]
Prediction horizon 20
System sample time 0.01 [s]
GNC sample time 0.02 [s]
Maximum simulation time 450 [s]

ical simulator that recreates the whole FSS system, reproducing 
its dynamics and emulating the on-board sensors and actuators, 
is used to validate the models and tune the controllers. Then, the 
experiments are conducted on the NPS-POSEIDYN testbed [17]. The 
FSS has an on-board PC-104 computer based on an Intel Atom 
1.6 GHz 32 bit processor with a 2 GB of RAM and an 8 GB solid-
state drive. The operating system of the on-board computer is 
an RTAI-patched Ubuntu 14.04 Sever Edition which provides real-
time execution capabilities. The developed LQMPC and TRMPC con-
trollers are cross-compiled for the FSS 32-bit architecture and later 
transferred to the FSS.

The discrete-time linearized system is of the form (2), where 
the persistent disturbances affecting the system are defined as 
zero-mean random variables defined in an aforementioned convex 
and compact set w ∈W = 10−2

I6.
The hard constraints on states and inputs are defined in Ta-

ble 4 for the uncertain system, which represent also the constraints 
for the LQMPC setup, together with the tightened constraints de-
fined for the TRMPC problem. The matrices Q and R are set to 
diag(104 104 100 108 108 1) and diag(106 106 9 × 104), respec-
tively, while P is the solution of the discrete Algebraic Riccati 
equation. Whereas, for what concerns the model initialization set-
tings, they are resumed in Table 5 and have been adopted for both 
testbed simulations and experiments. Considering the computation 
time of the TRMPC algorithm and sample time, we adopt a predic-
tion horizon of 20 in order to guarantee the stability of the system 
and be compliant with the testbed constraint of maximum com-
putation time.

According to the mission scenario described in the previous 
Section, two different case studies have been selected, consider-
ing the following ICs:

1. Case A: (3.50 3.50 0 0 0 0), representing the optimal case 
from a mission point of view, since the large margin the 
Chaser has with respect to the cone boundaries,

2. Case B: (3.50 2.65 0 0 0 0), corresponding to the worst-
case scenario, where the spacecraft is close enough to one of 
the cone limit that, in presence of uncertainty and without a 
proper control, it could easily violate the cone constraints.

Each case study has been experimentally reproduced several 
times, to validate the behavior of the controller. The result anal-
ysis is based on the following performance parameters:
Table 6
Performance of controllers in Case A (LQ = LQMPC, TR = TRMPC).

MPC 
method

Time to-dock 
[s]

Control effort 
[Ns]

Avg/Max iter. 
[–]

Dock 
Y /N

LQ (sim.) 450.00 4.16 8.95/10 N
TR (sim.) 450.00 11.81 8.91/9 Y

LQ (exp.) 329.04 6.77 8.65/9 N
TR (exp.) 337.90 17.47 9.47/10 Y

Table 7
Performance of controllers in Case B (LQ = LQMPC, TR = TRMPC).

MPC 
method

Time to-dock 
[s]

Control effort 
[Ns]

Avg/Max iter. 
[–]

Dock 
Y /N

LQ (sim.) 450.00 3.82 8.94/10 Y
TR (sim.) 450.00 11.60 8.90/9 Y

LQ (exp.) 301.13 5.22 8.58/9 Y
TR (exp.) 320.65 16.07 9.46/10 Y

• Time-to-dock, which defines the total duration of the maneu-
ver performed by the Chaser to reach the Target, starting from 
the initial condition;

• Control effort, which measures the efficiency of the control ap-
proach and represents a fuel consumption estimation.

The controller performance in terms of computational time and 
control effort are reported in Table 6 for Case A, and Tables 7 for 
Case B. In addition, the satisfaction or violation of the constraints 
represents the third parameter in terms of how the optimization-
based controller is able to handle the disturbances present in the 
system. Moreover, it is important to highlight that all the trajec-
tories depicted in Figs. 6, 7 and 8 have been obtained with re-
spect to a minimum-effort performance index. Indeed, while the 
rendezvous maneuver duration does not represent a stringent con-
straint, the control effort is linked to the fuel consumption as well 
as to the mission cost, hence it shall be minimized.

7.2. Case A

The trajectories obtained in Case A are represented in Fig. 6 for 
LQMPC and TRMPC, respectively. The first relevant difference is re-
lated to the divergence of the experimental trajectory with respect 
to the simulated one for the LQMPC approach. This behavior can 
bring the Chaser to not dock the Target at the end of the maneuver. 
In two over three experiments, the Chaser missed the Target, for 
the LQMPC approach, as shown in Fig. 6(a). On the other hand, the 
TRMPC approach shows a quasi-perfect match between the simu-
lation and experiment (see Fig. 6(b), finalizing the trajectory with 
the docking. In this case, even if the data reported in Table 6 show 
that the robust approach is slower and more fuel-consuming, i.e., 
the control effort is more than double in the experimental envi-
ronment, the main goal of the maneuver is to bring the Chaser to 
dock the Target, even in presence of persistent known disturbance. 
According to that, in this case the LQMPC approach cannot satisfy 
this objective when additive disturbance are acting on the system, 
since the drift action brings the spacecraft far from the terminal 
position of the Target.

7.3. Case B

Case B represents the most critical one, because of the vicin-
ity to the cone boundary. In this case, the docking condition is 
reached for both the approaches. However, there are several dif-
ferences between the results obtained for the two MPC methods, 
as represented in Fig. 7 and according to the controllers perfor-
mance parameters in Tables 6 and 7. In the second scenario, the 
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Fig. 6. Comparison of simulation and experimental trajectories in Case A. Three 
different experimental results are represented for each approach. The Chaser is rep-
resented at time t0 = 0 s, t1 = 20 s, t2 = 100 s, t3 = 200 s.

LQMPC also allows a faster maneuver, even if the difference is sig-
nificant only comparing the experimental results. Considering the 
control effort, the TRMPC proves itself to be the more fuel consum-
ing approach, in the order of two/three times more. Nonetheless, 
in terms of constraint satisfaction, the robust approach validates its 
robustness to bounded additive disturbance (see Fig. 7(b)), whereas 
the classical approach cannot deal with the uncertainty properly, 
as shown in Fig. 7(a), specially in the last part of the maneuver, as 
highlighted in Fig. 8. In fact, in the latter case, the Chaser violates 
the cone boundary, failing the docking in the experimental set up 
(see Fig. 8(a)) and the required attitude is not well-achieved.

8. Conclusions

Considering the maneuver of rendezvous and docking (RVD) be-
tween two spacecraft as a mission scenario, the performance of 
two Model Predictive Control (MPC) schemes, one deterministic 
and one robust, have been compared in presence of persistent ad-
ditive disturbance. A Tube-based Robust MPC (TRMPC), related to 
the approach already proposed in literature, has been adopted for 
the first time within this scenario as robust scheme, to guarantee 
robustness and suitable computational effort for real-time imple-
Fig. 7. Comparison of simulation and experimental trajectories in Case B. Three 
different experimental results are represented for each approach. The Chaser is rep-
resented at time t0 = 0 s, t1 = 20 s, t2 = 100 s, t3 = 200 s.

mentations. The stability of this robust scheme is ensured through 
a Linear Matrix Inequalities (LMI) approach, taking into account 
possible parametric uncertainty representing unmodeled dynamics, 
and neglected nonlinearities. Focusing on the robust approach, the 
Chaser spacecraft satisfies the hard state and control constraints 
and performs an autonomous docking with the Target, both in 
simulation (three degree-of-freedom (DoF) orbital simulator) and 
experimental environment (three DoF air-bearing testbed). On the 
other hand, the deterministic LQMPC is not always able to satisfy 
the state and input constraints, especially, in terms of cone bound-
aries, i.e., the Chaser cannot dock the Target. The results shown 
that they can be implemented on-board for the real-time control 
of the final phase of the RVD maneuver, with a comparable com-
putational effort, even if the fuel consumption is higher when the 
robust approach is adopted. Hence, if the constraint satisfaction 
represents the main mission requirement, the TRMPC guarantees 
better performance.

In this work, V-bar approach has been chosen as capture axis, 
referring to the RVD mission profile of Soyuz, Progress and ATV 
vehicles. The effectiveness of the controller is ensured by the ter-
minal cost, defined with respect to the reference final position to 
be reached and the control strategy is not tailored with respect 
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Fig. 8. Zoomed-in trajectory of Case B for LQMPC and TRMPC. Three different exper-
imental results are represented for each approach.

to the scenario considered, from a theoretical viewpoint. Finally, a 
tracking approach could be exploited, driving the error between 
the actual state and the desired one to zero. In this case, the 
TRMPC approach also remains valid and all the properties stand if 
the cost function as well as the state constraint set are re-defined 
with respect to the deviation δx = x − xref . Thanks to the flexibility 
of the proposed controller, it could be exploited also for different 
space scenarios such as: (a) R-bar approach, considering the mis-
sion profile of Soyuz and Progress vehicles on the nadir pointing 
side of the ISS Docking and Storage Module; (b) station-keeping; 
(c) attitude control, accounting for various mission objectives and 
type of spacecraft.
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