337 research outputs found

    Precision benchmark calculations for four particles at unitarity

    Get PDF
    The unitarity limit describes interacting particles where the range of the interaction is zero and the scattering length is infinite. We present precision benchmark calculations for two-component fermions at unitarity using three different ab initio methods: Hamiltonian lattice formalism using iterated eigenvector methods, Euclidean lattice formalism with auxiliary-field projection Monte Carlo, and continuum diffusion Monte Carlo with fixed and released nodes. We have calculated the ground state energy of the unpolarized four-particle system in a periodic cube as a dimensionless fraction of the ground state energy for the non-interacting system. We obtain values 0.211(2) and 0.210(2) using two different Hamiltonian lattice representations, 0.206(9) using Euclidean lattice, and an upper bound of 0.212(2) from fixed-node diffusion Monte Carlo. Released-node calculations starting from the fixed-node result yield a decrease of less than 0.002 over a propagation of 0.4/E_F in Euclidean time, where E_F is the Fermi energy. We find good agreement among all three ab initio methods.Comment: 23 pages, 7 figures, final version to appear in Phys. Rev.

    Cubic Twistorial String Field Theory

    Full text link
    Witten has recently proposed a string theory in twistor space whose D-instanton contributions are conjectured to compute N=4 super-Yang-Mills scattering amplitudes. An alternative string theory in twistor space was then proposed whose open string tree amplitudes reproduce the D-instanton computations of maximal degree in Witten's model. In this paper, a cubic open string field theory action is constructed for this alternative string in twistor space, and is shown to be invariant under parity transformations which exchange MHV and googly amplitudes. Since the string field theory action is gauge-invariant and reproduces the correct cubic super-Yang-Mills interactions, it provides strong support for the conjecture that the string theory correctly computes N-point super-Yang-Mills tree amplitudes.Comment: 19+1 pages, 4+1 EPS figures, JHEP3 LaTeX; v2: minor corrections, references added; v3: the final version published in JHEP with a new footnote on the d=0 on-shell contributio

    Approximate and exact nodes of fermionic wavefunctions: coordinate transformations and topologies

    Full text link
    A study of fermion nodes for spin-polarized states of a few-electron ions and molecules with s,p,ds,p,d one-particle orbitals is presented. We find exact nodes for some cases of two electron atomic and molecular states and also the first exact node for the three-electron atomic system in 4S(p3)^4S(p^3) state using appropriate coordinate maps and wavefunction symmetries. We analyze the cases of nodes for larger number of electrons in the Hartree-Fock approximation and for some cases we find transformations for projecting the high-dimensional node manifolds into 3D space. The node topologies and other properties are studied using these projections. We also propose a general coordinate transformation as an extension of Feynman-Cohen backflow coordinates to both simplify the nodal description and as a new variational freedom for quantum Monte Carlo trial wavefunctions.Comment: 7 pages, 7 figure

    Inventory of Epiphytic Moss Flora in the Montane Forest of Mt. Kasiling Dako, Tarragona, Davao Oriental

    Get PDF
    Mosses have been found to be good indicators of environmental conditions. Their significant in the environment helps to evaluate and assess the effect of environmental changes on the ecosystem. This study aims to determine the record status of the collected species of mosses found in Mt. Kasiling Dako, Tomoaong, Tarragona, Davao Oriental, Philippines. The said station has an approximate elevation of 392.6 meters or 1,388.0 feet above mean sea level (masl). The inventory of the moss floral species was done through a transect walk (Alpha Taxonomy) which covers 200 meters following the trail of the forest. The choice of the area conducted through a purposive sampling method in which all mosses was examined and investigated. Twenty – one species of mosses was identified, classified, and described based on their life forms and habitat. Of the 21 specimens collected, eleven locally assessed as abundant while ten found rare. Based on the habitat preference of the mosses, nine preferred tree trunk, five preferred rocks, three for tree base, and two for both tree log and clay. Thus, these protected areas need to be preserved in order to ensure mosses’ growth and abundance. This furtherly recommend the conduct of morphological examination and find a standardized method of measuring status record of the moss floral species.  &nbsp

    Electron correlation in C_(4N+2) carbon rings: aromatic vs. dimerized structures

    Full text link
    The electronic structure of C_(4N+2) carbon rings exhibits competing many-body effects of Huckel aromaticity, second-order Jahn-Teller and Peierls instability at large sizes. This leads to possible ground state structures with aromatic, bond angle or bond length alternated geometry. Highly accurate quantum Monte Carlo results indicate the existence of a crossover between C_10 and C_14 from bond angle to bond length alternation. The aromatic isomer is always a transition state. The driving mechanism is the second-order Jahn-Teller effect which keeps the gap open at all sizes.Comment: Submitted for publication: 4 pages, 3 figures. Corrected figure

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal

    Half-lives of Sr-73 and Y-76 and the consequences for the proton dripline

    Get PDF
    The half-lives of seven nuclei have been determined in the neutron-deficient mass-70 region following their production via fragmentation of a 345 MeV/nucleon Xe-124 primary beam on a 740 mg/cm(2) Be-9 target at the RI Beam Factory, RIKEN. The results include two new (Sr-73 and Y-76) half-lives and a more precise measurement for the ground-state half-life of Sr-74. The new results are discussed with reference to previously published calculations that predict the location of the proton dripline in the light Sr and Y region of the nuclear chart. In addition, differences in the ground-state structure of Rb-72 and Y-76 are discussed with the aid of density functional theory calculations. These provide a possible explanation for why Rb-72 undergoes proton decay while the alpha-conjugate nucleus Y-76 predominantly undergoes beta(+) decay.Peer reviewe

    Borna disease virus (BDV) circulating immunocomplex positivity in addicted patients in the Czech Republic: a prospective cohort analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Borna disease virus (BDV) is an RNA virus belonging to the family Bornaviridae. Borna disease virus is a neurotropic virus that causes changes in mood, behaviour and cognition. BDV causes persistent infection of the central nervous system. Immune changes lead to activation of infection. Alcohol and drug dependence are associated with immune impairment.</p> <p>Methods</p> <p>We examined the seropositivity of BDV circulating immunocomplexes (CIC) in patients with alcohol and drug dependence and healthy individuals (blood donors). We examined 41 addicted patients for the presence of BDV CIC in the serum by ELISA at the beginning of detoxification, and after eight weeks of abstinence. This is the first such study performed in patients with alcohol and drug dependence.</p> <p>Results</p> <p>BDV CIC positivity was detected in 36.59% of addicted patients on day 0 and in 42.86% on day 56. The control group was 37.3% positive. However, we did not detect higher BDV CIC positivity in addicted patients in comparison with blood donors (p = 0.179). The significantly higher level of BDV CIC was associated with lower levels of GGT (gamma glutamyl transferase) (p = 0.027) and approached statistical significance with the lower age of addicted patients (p = 0.064). We did not find any association between BDV CIC positivity and other anamnestic and demographic characteristics.</p> <p>Conclusions</p> <p>In our study addicted patients did not have significantly higher levels of BDV CIC than the control group. The highest levels of BDV CIC were detected in patients with lower levels of GGT and a lower age.</p> <p>Trial registration</p> <p>This study was approved by the ethical committee of the University Hospital Medical Faculty of Charles University in Pilsen, Czech Republic (registration number 303/2001).</p

    Beta decay of the Tz=-2 nucleus 64Se and its descendants

    Get PDF
    International audience; The beta decay of the Tz=-2 nucleus 64Se has been studied in a fragmentation reaction at RIKEN-Nishina Center. 64Se is the heavies Tz=-2 nucleus that decays to bound states in the daughter nucleus and the heaviest case where the mirror reaction 64Zn(3He,t)64Ga on the Tz=+2 64Zn stable target exists and can be compared. Beta-delayed gamma and proton radiation is reported for the 64Se and 64As cases. New levels have been observed in 64As, 64Ge (N=Z), 63Ge and 63Ga. The associated T1/2 values have been obtained
    • …
    corecore