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The unitarity limit describes interacting particles where the range of the interaction is zero and the scattering
length is infinite. We present precision benchmark calculations for two-component fermions at unitarity using
three different ab initio methods: Hamiltonian lattice formalism using iterated eigenvector methods, Euclidean
lattice formalism with auxiliary-field projection Monte Carlo methods, and continuum diffusion Monte Carlo
methods with fixed and released nodes. We have calculated the ground-state energy of the unpolarized four-particle
system in a periodic cube as a dimensionless fraction of the ground-state energy for the noninteracting system.
We obtain values of 0.211(2) and 0.210(2) using two different Hamiltonian lattice representations, 0.206(9)
using Euclidean lattice formalism, and an upper bound of 0.212(2) from fixed-node diffusion Monte Carlo
methods. Released-node calculations starting from the fixed-node result yield a decrease of less than 0.002 over
a propagation of 0.4E−1

F in Euclidean time, where EF is the Fermi energy. We find good agreement among all
three ab initio methods.
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I. INTRODUCTION

The unitarity limit describes interacting particles where the
range of the interaction is zero and the S-wave scattering
length is infinite. In this paper we consider the unitarity
limit of two-component fermions. Throughout our discussion
we refer to the two degenerate components as up and
down spins, though the correspondence with actual spin is
not necessary. At sufficiently low temperatures the spin-
unpolarized system is an S-wave superfluid with properties
in between a Bardeen-Cooper-Schrieffer (BCS) fermionic
superfluid at weak coupling and a Bose-Einstein condensate
of dimers at strong coupling [1–3]. In nuclear physics the
phenomenology of the unitarity limit approximately describes
cold dilute neutron matter. The scattering length for elastic
neutron-neutron collisions is about −18 fm, while the range of
the interaction is roughly the Compton wavelength of the pion,
1.4 fm. The unitarity limit is approximately realized when the
interparticle spacing is about 5 fm. While these conditions
cannot be produced experimentally, neutrons at around this
density can be found in the inner crust of neutron stars.

Experimental probes of the unitarity limit are now well
established using trapped ultracold Fermi gases of alkali
atoms. The characteristic length scale for the interatomic
potential is the van der Waals length �vdW. In the dilute limit
the spacing between atoms can be made much larger than
�vdW, and the interatomic potential is well approximated by
a zero-range interaction. The S-wave scattering length can
be tuned using a magnetic Feshbach resonance [4–8]. This
technique involves setting the energy level for a molecular
bound state in a “closed” hyperfine channel to cross the
scattering threshold for the “open” channel. The total magnetic
moments for the two channels are different, and so the crossing
can be produced using an applied magnetic field.

The ground state for two-component fermions in the
unitarity limit has no physical length scales other than the

average distance between particles. The scaling properties in
the unitarity limit are the same as those of a noninteracting
Fermi gas. For N↑ up spins and N↓ down spins in a given
volume we write the energy of the unitarity-limit ground state
as E0

N↑,N↓ . For the same volume we call the energy of the free,

noninteracting ground state E
0,free
N↑,N↓ . In the following we write

the dimensionless ratio of the two energies as ξN↑,N↓ ,

ξN↑,N↓ = E0
N↑,N↓

/
E

0,free
N↑,N↓ . (1)

The parameter ξ is defined as the thermodynamic limit for the
spin-unpolarized system,

ξ = lim
N→∞

ξN,N . (2)

II. RESULTS FOR ξ AND THE NEED FOR
PRECISION BENCHMARKS

Several experiments have measured ξ using the expansion
rate of 6Li and 40K released from a harmonic trap as well
as sound propagation. Some recent measured values for ξ

are 0.32+13
−10 [9], 0.36(15) [10], 0.51(4) [11], 0.46(5) [12],

0.46+05
−12 [13], 0.435(15) [14], 0.41(15) [15], 0.41(2) [16], and

0.39(2) [16]. Another preliminary measurement finds a value
0.36(1) [17].

There are numerous analytical calculations of ξ using a
variety of techniques, such as saddle-point and variational
approximations [18,19], Padé approximations and truncated
series methods [20–22], mean-field theory with pairing
[23,24], density-functional theory extrapolated from small
systems [25], renormalization-group flow [26], dimensional
expansions [27–33], large-N expansions [34], and other
methods [35]. The values for ξ range from 0.2 to 0.6, with
most predictions in the range from 0.3 to 0.4.
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There are also many numerical calculations for ξ . The
earliest fixed-node diffusion Monte Carlo simulations for N

spin-up and N spin-down fermions in a periodic cube found
ξN,N to be 0.44(1) for 5 � N � 21 [36] and 0.42(1) for larger
N [37,38]. A restricted path-integral Monte Carlo calculation
found similar results [39], and a sign-restricted mean-field
lattice calculation yields 0.449(9) [40]. Another fixed-node
diffusion Monte Carlo calculation sets an upper bound for
ξN,N at 0.4244(1) for N = 33 and 0.4339(1) for N = 64 [41].
A more recent fixed-node calculation sets an upper bound
for ξN,N at 0.383(1) for N between 2 and 65 [42]. This
study includes an extrapolation to the zero-range limit and
an analysis of shell effects using density-functional theory.
We note that methods such as the fixed-node diffusion Monte
Carlo method provide only an upper bound for the ground-state
energy. An unbiased estimate for the ground-state energy
requires releasing the nodal constraint over a propagation time
comparable to the diffusion time for neighboring particles to
cross paths.

There have also been a number of lattice simulations of
two-component fermions in the unitarity limit. Several lattice
simulations for the average energy at nonzero temperature
have been extrapolated to the zero-temperature limit. The
extrapolated zero-temperature results from [43,44] established
a bound, 0.07 � ξ � 0.42. The results of Ref. [45] as well as
Ref. [46,47] produce a value for ξ in the 0.3 to 0.5 range. More
recent lattice calculations extrapolated to zero temperature
yield values of ξ = 0.292(24) [48,49] and ξ = 0.37(5) [50].

In Ref. [51] the ground-state energy was calculated on
the lattice using auxiliary-field Monte Carlo methods and
Euclidean time projection starting from an initial state. The
values of ξN,N for N = 3,5,7,9,11 were calculated at lattice
volumes 43,53,63 in units of lattice spacing. From these small
volumes it was estimated that ξ = 0.25(3). In Ref. [52] this
lattice calculation was improved using bounded continuous
auxiliary fields. This calculation included an extrapolation to
the continuum limit for ξ5,5 and ξ7,7 using lattice volumes
43,53,63,73,83. The results obtained were ξ5,5 = 0.292(12)
and ξ7,7 = 0.329(5). Another technique called the symmetric
heavy-light ansatz found similar values for ξN,N . While this
approach is not an ab initio method, the agreement with
the values for ξ5,5 and ξ7,7 in Ref. [52] were within an
error of 0.015. This method gives an estimate of ξ = 0.31(1)
in the continuum and thermodynamic limits [53]. Another
extrapolation of the same data using density-functional theory
to include shell effects yields a value of ξ = 0.322(2) [42].
Some newer but preliminary lattice calculations using different
projection and sampling methods produce a value of ξN,N =
0.412(4) for N in the range from 8 to 19 [54,55].

The physics of the unitarity limit is universal and can
be observed in many different systems and calculated using
many different methods. However, the spread in experimental,
analytical, and numerical evaluations for ξN,N and ξ highlights
the need for precision benchmarks and a more careful
understanding of residual errors. Benchmarks at unitarity
have been a subject of much discussion at several recent
workshops and programs at the Institute for Nuclear Theory
in Seattle. In this paper we discuss benchmarks for four
unpolarized particles in a periodic cube. We focus on first-
principles numerical calculations for ξ2,2 where all stochastic,

extrapolation, and systematic errors can be reliably estimated.
The three calculations we compare are the Hamiltonian lattice
formalism using iterated eigenvector methods, Euclidean
lattice formalism with auxiliary-field projection Monte Carlo
methods, and continuum diffusion Monte Carlo methods with
fixed and released nodes.

III. NOTATION AND DEFINITIONS

Let E
0,free
N↑,N↓ be the ground-state energy for N↑ up-spin and

N↓ down-spin free fermions with equal masses in a periodic
cube. We write E0

N↑,N↓ for the ground-state energy at unitarity
for the same particle numbers, N↑ and N↓, and the same
periodic cube. In the introduction we defined the energy ratio,

ξN↑,N↓ = E0
N↑,N↓

/
E

0,free
N↑,N↓ . (3)

We should point out that there are actually two different
conventions for ξN↑,N↓ used in the literature. We refer to Eq. (3)
as the few-body definition for the energy ratio ξN↑,N↓ . This is
the definition we use for all calculations presented here.

The alternative definition for the energy ratio ξN↑,N↓ is
what we call the thermodynamical definition. This involves
replacing E

0,free
N↑,N↓ by the formula one gets in the thermodynamic

limit. We define the Fermi momenta and energies in terms of
the particle density,

kF,↑ =
(

6π2 N↑
L3

)1/3

, kF,↓ =
(

6π2 N↓
L3

)1/3

, (4)

EF,↑ = k2
F,↑

2m
, EF,↓ = k2

F,↓
2m

. (5)

In the thermodynamic limit the ground-state energy of the
noninteracting system is

3
5N↑EF,↑ + 3

5N↓EF,↓. (6)

We use this to define the thermodynamical definition of the
energy ratio,

ξ thermo
N↑,N↓ =

E0
N↑,N↓

3
5N↑EF,↑ + 3

5N↓EF,↓
. (7)

For finite N↑ and N↓ the few-body ratio ξN↑,N↓ and
thermodynamical ratio ξ thermo

N↑,N↓ differ due to shell effects in
the noninteracting system. There are several calculations in
the literature using each of these two alternative definitions.
In Table I we have tabulated the conversion between the
two definitions for several values of particle number with
N↑ = N↓.

IV. HAMILTONIAN LATTICE WITH SPARSE-MATRIX
EIGENVECTOR ITERATION

A. Formalism and notation

Let �n denote spatial lattice points on a three-dimensional
L × L × L periodic cube. We use lattice units where physical
quantities are multiplied by powers of the spatial lattice
spacing to make the combination dimensionless. The two-
component fermions are labeled as spin up and spin down, and
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TABLE I. Conversion factor between the two ground-state ratios
ξN↑,N↓ and ξ thermo

N↑,N↓ for various values of N↑ = N↓.

N↑ = N↓ ξN↑,N↓/ξ
thermo
N↑,N↓ N↑ = N↓ ξN↑,N↓/ξ

thermo
N↑,N↓

2 0.7331 8 0.9236
3 0.7204 9 0.8991
4 0.7758 10 0.8931
5 0.8439 16 0.9774
6 0.9149 24 1.0246
7 0.9858 32 1.0064

the lattice annihilation operators are written as a↑(�n) and a↓(�n).
We start with the free nonrelativistic lattice Hamiltonian,

Hfree = 3

m

∑
�n,i=↑,↓

a
†
i (�n)ai(�n) − 1

2m

∑
l=1,2,3

∑
�n,i=↑,↓

[a†
i (�n)ai(�n + l̂)

+ a
†
i (�n)ai(�n − l̂)]. (8)

We define the spin-density operators

ρ↑(�n) = a
†
↑(�n)a↑(�n), (9)

ρ↓(�n) = a
†
↓(�n)a↓(�n). (10)

We consider two different lattice Hamiltonians, each of which
yield the unitarity limit in the low-energy limit. The first
Hamiltonian H1 has a single-site contact interaction,

H1 = Hfree + C1

∑
�n

ρ↑(�n)ρ↓(�n). (11)

The coefficient of C1 is tuned to set the S-wave scattering
length a0 to infinity. The second Hamiltonian H2 has a contact
interaction as well as nearest-neighbor interaction terms,

H2 = Hfree + C2

∑
�n

ρ↑(�n)ρ↓(�n)

+C ′
2

∑
l=1,2,3

∑
�n

[ρ↑(�n)ρ↓(�n + l̂) + ρ↑(�n + l̂)ρ↓(�n)]. (12)

The coefficients C2 and C ′
2 are tuned so that a0 goes to infinity

while the S-wave effective range parameter r0 vanishes.
We use Lüscher’s formula [56–59] to determine the

unknown interaction coefficients C1, C2, and C ′
2. Lüscher’s

formula relates the two-particle energy levels in a length L

periodic cube to the S-wave phase shift,

p cot δ0(p) = 1

πL
S (η) , η =

(
Lp

2π

)2

, (13)

where S(η) is the three-dimensional ζ function,

S(η) = lim
�→∞

[∑
�n

θ (�2 − �n2)

�n2 − η
− 4π�

]
. (14)

In terms of η, the energy of the two-particle scattering state is

Epole = p2

m
= η

m

(
2π

L

)2

. (15)

The S-wave effective range expansion gives

p cot δ0(p) = − 1

a0
+ 1

2
r0p

2 + O(p4). (16)
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FIG. 1. (Color online) Plot of p cot δ0(p) versus p2 for the lattice
Hamiltonians H1 and H2.

Setting a0 to infinity requires p cot δ0(p) to vanish at threshold.
Setting both a0 to infinity and r0 to zero requires that
p cot δ0(p) is O(p4) near threshold. The plots for p cot δ0(p)
versus p2 are shown in Fig. 1. The values we find for the
interaction coefficients are

mC1 = −3.9570, (17)

mC2 = −3.7235, mC ′
2 = −0.3008. (18)

B. Results for the four-particle benchmark

Using the Lanczos algorithm for sparse-matrix eigenvector
iteration [60], we have computed the ground-state energy for
two spin-up and two spin-down particles in a periodic cube of
length L. For both lattice Hamiltonians, H1 and H2, we have
computed ξ2,2 as defined in Eq. (3) for values of L = 4,5,6,7,8.
The results are shown in Fig. 2.

We have fitted the data using polynomials in 1/L up to third
order and extrapolate to the infinite L limit with an estimated
extrapolation error of ±0.002. We note that this extrapolation
should remove all measurable lattice discretization effects. For
H1 we find

ξ2,2 = 0.211(2), (19)

and for H2 we get

ξ2,2 = 0.210(2). (20)

The agreement between these two independent calculations is
consistent with our estimate of the systematic errors.

The third-degree polynomial extrapolation is made possible
by the high-precision data obtained for each L using the Lanc-
zos eigenvector iteration. For the Monte Carlo data appearing
later in our discussion we use only linear extrapolations in
1/L. For the H2 data we note the small slope in 1/L near
1/L = 0. This is expected due to the effective range r0 being
set to zero for H2. The small amount of linear dependence in
1/L that remains is likely due to other lattice artifacts, such as
the breaking of Galilean invariance [61].
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FIG. 2. (Color online) Ground-state energy ratio ξ2,2 for lattice
Hamiltonians H1 and H2. We show results for values of L = 4,5,6,7,8
and extrapolate to the infinite volume limit.

V. EUCLIDEAN LATTICE WITH AUXILIARY-FIELD
PROJECTION MONTE CARLO METHODS

A. Formalism and notation

For the Euclidean lattice calculation we use the normal-
ordered transfer-matrix formalism used in Ref. [51,52,62,63].
Normal ordering refers to the rearrangement of operators with
annihilation operators on the right and creation operators on
the left. This prescription is useful in that it provides an
exact relation between Grassmann path integration and the
operator formalism [64,65]. The details of the application of
this correspondence can be found in Refs. [52,62,63]. As
before we use lattice units that correspond to multiplying
physical quantities by the corresponding power of the spatial
lattice spacing to make the combination dimensionless. We
write αt = at/a for the dimensionless ratio of the temporal
lattice spacing to spatial lattice spacing. For fermion mass m,
we take the ratio of lattice spacings so that m−1αt = 0.1109.

We start with the normal-ordered transfer matrix operator,

M = : exp

[
−Hfreeαt − Cαt

∑
�n

ρ↑(�n)ρ↓(�n)

]
: . (21)

The free lattice Hamiltonian Hfree was defined in Eq. (8), and
the spin densities were defined Eqs. (9) and (10). Just as in
the Hamiltonian lattice calculation we use Lüscher’s formula
to determine the unknown coefficient C. Setting the S-wave
scattering length to infinity, we find

mC = −3.4938. (22)

In Fig. 3 we plot p cot δ0(p) versus p2 at unitarity.
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FIG. 3. (Color online) Plot of p cot δ0(p) versus p2 for the
Euclidean time lattice formalism.

For the Monte Carlo simulations we use the bounded con-
tinuous auxiliary-field transformation introduced in Ref. [52].
This transformation was shown in Ref. [52] to have per-
formance advantages over other continuous and discrete
auxiliary-field transformations. We can write the transfer
matrix as

M =
∏

�n

[
1

2π

∫ +π

−π

ds(�n,nt )

]
M(s,nt ), (23)

where

M(s,nt ) = : exp

{
−Hfreeαt +

∑
�n

√
−2Cαt sin[s(�n,nt )]

× [ρ↑(�n) + ρ↓(�n)]

}
: . (24)

Let |� init
2,2 〉 be a Slater determinant of single-particle normal

modes composed of two spin-up fermions and two spin-down
fermions, ∣∣� init

2,2

〉 = |ψ1〉 × |ψ2〉 × |ψ3〉 × |ψ4〉. (25)

For the calculations presented here we choose

|ψ1〉 =
√

1

L3

∑
�n

a
†
↑(�n)|0〉,

(26)

|ψ2〉 =
√

2

L3

∑
�n

cos(2πn3/L)a†
↑(�n)|0〉,

|ψ3〉 =
√

1

L3

∑
�n

a
†
↓(�n)|0〉,

(27)

|ψ4〉 =
√

2

L3

∑
�n

cos(2πn3/L)a†
↓(�n)|0〉.

|ψ1〉 and |ψ3〉 are constant valued throughout the periodic box,
while |ψ2〉 and |ψ4〉 are standing waves with wavelength L
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along the z axis. We construct the Euclidean time projection
amplitude

Z2,2(t) ≡
∏
�n,nt

[
1

2π

∫ +π

−π

ds(�n,nt )

]

× 〈
� init

2,2

∣∣M(s,Lt − 1) · · · M(s,0)
∣∣� init

2,2

〉
, (28)

where the Euclidean projection time t equals Lt times the
temporal lattice spacing.

Each M(s,nt ) consists of only single-particle operators
interacting with the background auxiliary field. Therefore, we
find〈
� init

2,2

∣∣M(s,Lt − 1) · · · M(s,0)
∣∣� init

2,2

〉 = [det M(s,t)]2, (29)

where

[M(s,t)]k′k = 〈ψk′ |M(s,Lt − 1) · · · M(s,0)|ψk〉 (30)

for matrix indices k,k′ = 1,2,3,4. We define a t-dependent
energy expectation value,

E2,2(t) = 1

αt

ln
Z2,2(t − αt )

Z2,2(t)
. (31)

We can also express the t-dependent expectation value as a
fraction of the noninteracting ground-state energy,

ξ2,2(t) = E2,2(t)
/
E

0,free
2,2 . (32)

The ground-state energy E0
N,N is given by the limit

E0
2,2 = lim

t→∞ E2,2(t), (33)

and the desired few-body energy ratio can be computed as the
limit

ξ2,2 = lim
t→∞ ξ2,2(t). (34)

B. Results for the four-particle benchmark

For the calculation of ξ2,2(t) we use the lattice dimensions
L3 × Lt shown in Table II. The simulations are run with 2048
processors each independently generating 3000 hybrid Monte
Carlo trajectories [66–68]. To extract ξ2,2 we perform a least-
squares fit of ξ2,2(t) to the asymptotic form,

ξ2,2(t) = ξ2,2 + be−δE t . (35)

This exponential form takes into account the contribution
from higher-energy states and is the same method used

TABLE II. Lattice dimensions L3 × Lt used in calculations for
ξ2,2(t).

L3

43 53 63 73 83

30 50 72 96 120
36 60 84 112 140Lt ...

...
...

...
78 130 180 256 300
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FIG. 4. (Color online) The lattice data for ξ2,2(t) versus EF t for
L = 4,5,6,7,8. Also shown are the results of the asymptotic fits.

in Ref. [51,52,62,63]. We focus on measuring the ground-
state energy accurately and ignore the numerically small
contributions hidden in the far asymptotic tail of ξ2,2(t). We
determine b, δE, and ξ2,2 from least-squares fitting over the
range EF t = 2 to EF t = 6. The lattice data for ξ2,2(t) together
with the asymptotic fits are shown in Fig. 4.

We use the lattice results for ξ2,2 with L = 4,5,6,7,8 to
extrapolate to the continuum limit L → ∞. In Fig. 5 we show
the lattice results for ξ2,2 for L = 4,5,6,7,8 plotted versus L−1.
We expect a dependence on L arising from effects such as the
effective range correction and lattice cutoff effects. Using a
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FIG. 5. (Color online) Results for ξ2,2 for L = 4,5,6,7,8 plotted
versus L−1. The lattice results are extrapolated to the continuum limit
L → ∞.
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linear extrapolation in L−1, we obtain the continuum limit
value

ξ2,2 = 0.206(9). (36)

This result using the Euclidean lattice projection Monte Carlo
method is in agreement with the Hamiltonian lattice results in
Eqs. (19) and (20).

VI. DIFFUSION MONTE CARLO METHODS WITH FIXED
AND RELEASED NODES

A. Formalism and notation

We now discuss diffusion Monte Carlo calculations for
the same benchmark system of four particles at unitarity
in a periodic cube with length L. This time, however, we
use continuous variables and consider the evolution as a
function of Euclidean time as a diffusion Monte Carlo process
using an ensemble of random walkers. An introduction to
the basic techniques can be found in Ref. [69]. For the
interaction between spin-up and spin-down fermions we use
a Pöschl-Teller potential tuned to infinite S-wave scattering
length. For fermion mass m, the form of the potential is

V (r) = − 2

m

µ2

cosh2(µr)
, (37)

where the momentum scale µ determines the S-wave effective
range parameter,

r0 = 2µ−1. (38)

The unitarity limit corresponds with taking the limit µ → ∞.
For the unpolarized four-particle system we let R be the set of
individual particle coordinates,

R = {�r1↑ ,�r1↓ ,�r2↑ ,�r2↓}. (39)

We use a BCS-type pairing wave function projected onto
two spin-up and two spin-down fermions. The wave function
�BCS(R) can be written as a 2 × 2 Slater determinant,

�BCS(R) = det

[
φ(�r1↑ − �r1↓ ) φ(�r1↑ − �r2↓ )

φ(�r2↑ − �r1↓ ) φ(�r2↑ − �r2↓ )

]
, (40)

where φ(�r) is the pairing function. The trial wave function
�T (R) is given as a product of �BCS(R) times a Jastrow factor
[70],

�T (R) = �BCS(R) exp[J (R)]. (41)

The Jastrow factor incorporates particle correlations and is
useful in reducing stochastic errors in the Monte Carlo
calculation [71–74]. We use a product of Gaussian functions
for the Jastrow factor. The exponents of these Gaussian
functions are tuned to minimize the combination of the
variational energy and the variance of the local energy in
the variational Monte Carlo method. We note that the positive
definite function exp[J (R)] has no effect on the nodal structure
of �T (R).

To determine the pairing function φ(�r) we use an approach
similar to that in Ref. [36]. We use an ansatz that is a
superposition of Gaussian functions with periodic copies,

φ(�r) =
∑

k

dk

1∑
sx ,sy ,sz=−1

e− αk
2 (x+sxL)2

e− αk
2 (y+syL)2

e− αk
2 (z+szL)2

.

(42)

Here �r = (x,y,z), and dk and αk are variational parameters.
Gaussian functions from the nearest periodic images at
distance L make small contributions, while periodic copies
farther away can be neglected. This construction has the
advantage of providing more flexibility for pairing orbitals
in the box while keeping the orbitals smooth over the periodic
boundary with zero derivative. The Jastrow factor exp[J (R)]
is constructed similarly. The calculation is performed using
standard variational Monte Carlo sampling of the square of
the trial function [69,75].

For the diffusion Monte Carlo calculation we use a
large ensemble of forward-propagating random walkers with
population branching processes determined by the local energy
and guided by the trial wave function �T (R). The local density
of random walkers gives a statistical estimate of the product
of the propagated quantum wave function �(R) times the
�T (R) trial function. In the fixed-node (FN) diffusion Monte
Carlo (DMC) calculation, the nodal structure of �(R) is
fixed by �T (R), and the product �(R) �T (R) is therefore
positive definite. Since the trial function is known explicitly
and analytically, it is then possible to extract the energetics
of the lowest fermionic state within the fixed-node boundary
conditions [69,75].

The fixed-node calculation sets an upper bound on the
ground-state energy. To measure the quality of the upper bound
we release the nodal constraints [76]. For the released-node
(RN) DMC calculation we use a positive-definite guiding
profile for the diffusion of random walkers. In the calculations
presented here we consider a one-parameter family of guiding
profiles,

�α
G(R) =

√
�2

T (R) + α
〈
�2

T

〉
. (43)

The dimensionless parameter α controls the rate of diffusion
across the nodal boundaries of �T (R), and 〈�2

T 〉 is the average
value of �2

T (R0) evaluated over all R0, where R0 is the
configuration right after the nodal release process.

B. Results for the four-particle benchmark

In Fig. 6 we show fixed-node (FNDMC) and released-node
(RNDMC) diffusion Monte Carlo results for two spin-up and
spin-down fermions in a periodic cube at unitarity. The ratio
of the effective range parameter to the length of the cube is
r0/L = 1/40. We use parameters α = 0.01, 0.05, 0.2 for the
guiding profile �α

G(R). With each nodal crossing the associated
weights of the random walkers change sign, leading to a sign
cancellation problem that grows exponentially with Euclidean
propagation time t . For the calculations presented here we
have measured the released-node correction starting from the
fixed-node result up to propagation time of t = 0.4E−1

F . As
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FIG. 6. (Color online) Fixed-node and released-node diffusion
Monte Carlo results for r0/L = 0.025 and α = 0.01, 0.05, 0.2.

seen in Fig. 6, the decrease in ξ2,2 is less than 0.002 over the
duration of the released-node time propagation.

We have repeated the fixed-node and released-node calcu-
lations of ξ2,2 for values of r0/L = 1/20, 1/40, 1/80, 1/160,
1/320, 1/640. The fixed-node results for ξ2,2 versus the r0/L

are shown in Fig. 7. Using a linear fit in r0/L, we extrapolated
to the limit of zero effective range.

In the zero-range limit we get the final result

ξ2,2 = 0.212(2) (44)

in the fixed-node approximation. The error estimate includes
the stochastic error, zero-range extrapolation error, and errors
due to time-step discretization and other small residual effects.

 0.19
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 0.24

 0.25

 0  0.01  0.02  0.03  0.04  0.05  0.06

ξ 2
,2

r0 /L

0.212(2)
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FIG. 7. (Color online) Fixed-node diffusion Monte Carlo results
for ξ2,2 versus r0/L. The data are extrapolated to the limit of zero
effective range.

The released-node calculations are quantitatively similar to the
results shown in Fig. 6 for r0/L = 1/40. The decrease in ξ2,2

is less than 0.002 over a propagation time of 0.4E−1
F . We

note that E−1
F is the characteristic time scale required for two

neighboring particles of the same spin to cross paths. Given the
stochastic noise in the released-node calculation results, it is
difficult to pin down a correction to the fixed-node result from
the nodal release. However, a reasonable conservative estimate
is that the upper bound set by the fixed-node calculation is less
than 0.002/0.4 = 0.005 above the actual value. This appears
to be confirmed by the agreement of Eq. (44) with the values
for ξ2,2 obtained using the Hamiltonian lattice eigenvector
iteration and the Euclidean lattice Monte Carlo method.

VII. SUMMARY AND DISCUSSION

We have presented benchmark calculations for four un-
polarized particles in a periodic cube using three different
methods. In the Hamiltonian lattice formalism with iterated
eigenvector methods, we obtained

ξ2,2 = 0.211(2) (45)

using the Hamiltonian H1 defined in Eq. (11) and

ξ2,2 = 0.210(2) (46)

using the Hamiltonian H2 defined in Eq. (12). Using the
Euclidean lattice formalism with the auxiliary-field projection
Monte Carlo method, we found the result

ξ2,2 = 0.206(9). (47)

With the fixed-node diffusion Monte Carlo method in the
continuum we extracted the upper bound

ξ2,2 � 0.212(2). (48)

The release-node Monte Carlo calculation shows a decrease
in ξ2,2 that is less than 0.002 over a propagation time of
0.4E−1

F . We estimate that the upper bound set by the fixed-node
calculation is less than 0.005 above the actual value. All
three methods agree within estimated errors. The unpolarized
four-particle benchmarks presented here should be useful for
testing and calibrating residual errors for other numerical
methods and perhaps also analytical calculations. We note
that the comparison requires using the few-body definition of
ξ2,2 in Eq. (3). If the thermodynamical definition in Eq. (7) is
used, then the conversion factor is ξ2,2 = 0.7331ξ thermo

2,2 .
We note the importance of continuum limit extrapolations

for lattice calculations and zero-range limit extrapolations for
continuum diffusion Monte Carlo calculations. The impor-
tance of continuum limit extrapolations in lattice calculations
was already noted and measured in Ref. [52]. In the fixed-node
diffusion Monte Carlo calculations presented here we find that
r0/L needs to be less than 0.03 in order to obtain a value for ξ2,2

that is accurate to a relative error of 0.1. This is consistent with
the range dependence found in Ref. [42]. After discussion with
the authors of Ref. [42], we were informed that they obtained
an upper bound for ξ2,2 from the fixed-node diffusion Monte
Carlo method that agrees within two significant digits with the
results reported here.
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In this paper the four-particle benchmark was chosen to
allow comparisons among several very different numerical
methods. For larger N = N↑ = N↓ systems it is unfortunately
not possible to use iterated eigenvector methods due to
exponential L6N−3 scaling in memory. However, the Euclidean
lattice Monte Carlo and diffusion Monte Carlo methods extend
readily to larger systems, and it is useful to comment on the
relationship between the four-particle calculations discussed
here and calculations in larger systems at unitarity.

The four-particle results presented here should be useful for
comparisons of different lattice Monte Carlo calculations using
different lattice actions and algorithms. We note that there is
a significant correction produced by the extrapolation to the
continuum limit. For some lattice actions this extrapolation
decreases the ground-state energy, while for others it increases
the ground-state energy. In all cases it is important that
stochastic and systematic errors are sufficiently small for each
chosen lattice spacing so that the continuum extrapolation can
be done accurately. The same lattice methods used here to find
ξ2,2 = 0.206(9) were also used to determine ξ5,5 = 0.292(12)
and ξ7,7 = 0.329(5) in Ref. [52]. In order to benchmark
different lattice Monte Carlo methods, one starting point would
be to test agreement with each of these values for ξN,N .

The fixed-node diffusion Monte Carlo methods presented
here were also applied to larger N = N↑ = N↓ systems at
unitarity. In Ref. [77] the results ξ7,7 � 0.407(2), ξ19,19 �
0.409(3), and ξ33,33 � 0.398(3) are presented. These results
are comparable to the upper bounds found in Ref. [42],
and in each case a significant reduction in the ground-state
energy is seen when extrapolating to the zero-range limit.
For the released-node calculations in these larger systems,
the exponential severity of sign cancellations makes it difficult
to extract data for Euclidean propagation time t greater than
N−1E−1

F . As noted above, E−1
F is the characteristic time scale

required for two neighboring particles of the same spin to
cross paths. For N = 2 we extrapolated to get a bound on the
decrease in ξ2,2 over a propagation time of E−1

F . For larger N

the extrapolation from propagation time N−1E−1
F to time E−1

F

cannot be done reliably, and this is seen already for the case
N = 7 [77].

We note that there remains a significant gap between the
lattice result ξ7,7 = 0.329(5) and the fixed-node upper bound
ξ7,7 � 0.407(2). This discrepancy must be better understood.
A good starting point would be to make benchmark com-
parisons for other small systems, N = 3,4,5. First, it should
be established that different lattice calculations agree on the
values for ξ3,3, ξ4,4, and ξ5,5. Next, the difference between
lattice and fixed-node results should be measured for each N .
The key question then is if this difference can be resolved by
released-node calculations for smaller values of N . Given the
agreement for ξ2,2, there is some reason to suggest that this
may be possible.
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[28] T. Schäfer, C.-W. Kao, and S. R. Cotanch, Nucl. Phys. A 762,

82 (2005).
[29] Y. Nishida and D. T. Son, Phys. Rev. Lett. 97, 050403

(2006).
[30] Y. Nishida and D. T. Son, Phys. Rev. A 75, 063617

(2007).
[31] J.-W. Chen and E. Nakano, Phys. Rev. A 75, 043620 (2007).
[32] P. Arnold, J. E. Drut, and D. T. Son, Phys. Rev. A 75, 043605

(2007).
[33] Y. Nishida, Phys. Rev. A 79, 013627 (2009).
[34] P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).
[35] J. Chen, Chin. Phys. Lett. 24, 1825 (2007).
[36] J. Carlson, S. Y. Chang, V. R. Pandharipande, and K. E. Schmidt,

Phys. Rev. Lett. 91, 50401 (2003).
[37] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini,

Phys. Rev. Lett. 93, 200404 (2004).
[38] J. Carlson and S. Reddy, Phys. Rev. Lett. 95, 060401 (2005).
[39] V. K. Akkineni, D. M. Ceperley, and N. Trivedi, Phys. Rev. B

76, 165116 (2007).
[40] O. Juillet, New J. Phys. 9, 163 (2007).
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