272 research outputs found

    GLONASS CDMA L3 ambiguity resolution and positioning

    Get PDF
    A first assessment of GLONASS CDMA L3 ambiguity resolution and positioning performance is provided. Our analyses are based on GLONASS L3 data from the satellite pair SVNs 755-801, received by two JAVAD receivers at Curtin University, Perth, Australia. In our analyses, four different versions of the two-satellite model are applied: the geometry-free model, the geometry-based model , the height-constrained geometry-based model, and the geometry-fixed model. We study the noise characteristics (carrier-to-noise density, measurement precision), the integer ambiguity resolution performance (success rates and distribution of the ambiguity residuals), and the positioning performance (ambiguity float and ambiguity fixed). The results show that our empirical outcomes are consistent with their formal counterparts and that the GLONASS data have a lower noise level than that of GPS, particularly in case of the code data. This difference is not only seen in the noise levels but also in their onward propagation to the ambiguity time series and ambiguity residuals distribution

    The Online dating romance scam: The psychological impact on victims – both financial and non-financial

    Get PDF
    This paper examined the psychological impact of the online dating romance scam. Unlike other mass-marketing fraud victims, these victims experienced a ‘double hit’ of the scam: a financial loss and the loss of a relationship. For most, the loss of the relationship was more upsetting than their financial losses (many described the loss of the relationship as a ‘death’). Some described their experience as traumatic and all were affected negatively by the crime. Most victims had not found ways to cope given the lack of understanding from family and friends. Denial (e.g., not accepting the scam was real or not being able to separate the fake identity with the criminal) was identified as an ineffective means of coping, leaving the victim vulnerable to a second wave of the scam. Suggestions are made as to how to change policy with regards to law enforcement deal with this crime

    Theory of carrier phase ambiguity resolution

    Get PDF
    Carrier phase ambiguity resolution is the key to high precision Global Navigation Satellite System (GNSS) positioning and navigation. It applies to a great variety of current and future models of GPS, modernized GPS and Galileo. A proper handling of carrier phase ambiguity resolution requires a proper understanding of the underlying theory of integer inference. In this contribution a brief review is given of the probabilistic theory of integer ambiguity estimation. We describe the concept of ambiguity pull-in regions, introduce the class of admissible integer estimators, determine their probability mass functions and show how their variability affect the uncertainty in the so-called ‘fixed’ baseline solution. The theory is worked out in more detail for integer least-squares and integer bootstrapping. It is shown that the integer least-squares principle maximizes the probability of correct integer estimation. Sharp and easy-to-compute bounds are given for both the ambiguity success rate and the baseline’s probability of concentration. Finally the probability density function of the ambiguity residuals is determined. This allows one for the first time to formulate rigorous tests for the integerness of the parameters

    ANALYTICAL QUALITY ASSESSMENT OF ITERATIVELY REWEIGHTED LEAST-SQUARES (IRLS) METHOD

    Get PDF
    The iteratively reweighted least-squares (IRLS) technique has been widelyemployed in geodetic and geophysical literature. The reliability measures areimportant diagnostic tools for inferring the strength of the model validation. Anexact analytical method is adopted to obtain insights on how much iterativereweighting can affect the quality indicators. Theoretical analyses and numericalresults show that, when the downweighting procedure is performed, (1) theprecision, all kinds of dilution of precision (DOP) metrics and the minimaldetectable bias (MDB) will become larger; (2) the variations of the bias-to-noiseratio (BNR) are involved, and (3) all these results coincide with those obtained bythe first-order approximation method

    GNSS multi-frequency receiver single-satellite measurement validation method

    Get PDF
    A method is presented for real-time validation of GNSS measurements of a single receiver, where data from each satellite are independently processed. A geometry- free observation model is used with a reparameterized form of the unknowns to overcome rank deficiency of the model. The ionosphere error and non-constant biases such as multipath are assumed changing relatively smoothly as a function of time. Data validation and detection of errors are based on statistical testing of the observation residuals using the detection–identification–adaptation approach. The method is applicable to any GNSS with any number of frequencies. The performance of validation method was evaluated using multi-frequency data from three GNSS (GPS, GLONASS, and Galileo) that span 3 days in a test site at Curtin University, Australia. Performance of the method in detection and identification of outliers in code observations, and detection of cycle slips in phase data were examined. Results show that the success rates vary according to precision of observations and their number as well as size of the errors. The method capability is demonstrated when processing four IOV Galileo satellites in a single-point-positioning mode and in another test by comparing its performance with Bernese software in detection of cycle slips in precise point-positioning processing using GPS data

    Caring for a child with a learning disability born into the family unit: Women's recollections over time

    Get PDF
    This is the authors' print-print version of an article published in Scandianavian journal of disability research which is available online at: http://www.tandfonline.com/doi/abs/10.1080/15017419.2010.540827Caring over time for a child/young adult with a learning disability requires that the family, and in particular the mother, negotiate their needs with services and professionals, and these negotiations are complicated further by significant behavioural issues in the children. This study reports on a series of interviews undertaken with mothers of children and young adults with learning disabilities and a history of challenging behaviours. The interviews were supplemented by documentary data from clinical and other notes in order to provide a more detailed view of the issues arising from caring over time. Detailed thematic analysis revealed five key themes demonstrating the cumulative effect of caring for someone with such complex needs, the centrality of that individual’s needs to the lives of those interviewed and the ongoing negotiation between family and professionals required in order for the former to work out how to continue caring both effectively and on their own terms. All the names of mothers and children are psuedonyms

    Study on cycle-slip detection and repair methods for a single dual-frequency global positioning system (GPS) receiver

    Get PDF
    In this work, we assessed the performance of the cycle-slip detection methods: Turbo Edit (TE), Melbourne-Wübbena wide-lane ambiguity (MWWL) and forward and backward moving window averaging (FBMWA). The TE and MWWL methods were combined with ionospheric total electron content rate (TECR), and the FBMWA with second-order time-difference phase ionosphere residual (STPIR) and TECR. Under different scenarios, 10 Global Positioning System (GPS) datasets were used to assess the performance of the methods for cycle-slip detection. The MWWL-TECR delivered the best performance in detecting cycle-slips for 1 s data. The relative comparisons show that the FBMWA-TECR method performed slightly better than its original version, FBMWA-STPIR, detecting 100% and 73%, respectively. For data with a sample rate of 5 s, the FBMWA-TECR performed better than MWWL-TECR. However, the FBMWA is suitable only for post-processing, which refers to applications where the data are processed after the fact

    Integer Least-squares Theory for the GNSS Compass

    Get PDF
    Global navigation satellite system (GNSS) carrier phase integer ambiguity resolution is the key to high-precision positioning and attitude determination. In this contribution, we develop new integer least-squares (ILS) theory for the GNSS compass model, together with efficient integer search strategies. It extends current unconstrained ILS theory to the nonlinearly constrained case, an extension that is particularly suited for precise attitude determination. As opposed to current practice, our method does proper justice to the a priori given information. The nonlinear baseline constraint is fully integrated into the ambiguity objective function, thereby receiving a proper weighting in its minimization and providing guidance for the integer search. Different search strategies are developed to compute exact and approximate solutions of the nonlinear constrained ILS problem. Their applicability depends on the strength of the GNSS model and on the length of the baseline. Two of the presented search strategies, a global and a local one, are based on the use of an ellipsoidal search space. This has the advantage that standard methods can be applied. The global ellipsoidal search strategy is applicable to GNSS models of sufficient strength, while the local ellipsoidal search strategy is applicable to models for which the baseline lengths are not too small. We also develop search strategies for the most challenging case, namely when the curvature of the non-ellipsoidal ambiguity search space needs to be taken into account. Two such strategies are presented, an approximate one and a rigorous, somewhat more complex, one. The approximate one is applicable when the fixed baseline variance matrix is close to diagonal. Both methods make use of a search and shrink strategy. The rigorous solution is efficiently obtained by means of a search and shrink strategy that uses non-quadratic, but easy-to-evaluate, bounding functions of the ambiguity objective function. The theory presented is generally valid and it is not restricted to any particular GNSS or combination of GNSSs. Its general applicability also applies to the measurement scenarios (e.g. single-epoch vs. multi-epoch, or single-frequency vs. multi-frequency). In particular it is applicable to the most challenging case of unaided, single frequency, single epoch GNSS attitude determination. The success rate performance of the different methods is also illustrated
    • …
    corecore