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ambiguity resolution requires a proper understanding of 
the underlying theory of integer inference. In this 
contribution a brief review is given of the probabilistic 
theory of integer ambiguity estimation. We describe the 
concept of ambiguity pull-in regions, introduce the class 
of admissible integer estimators, determine their 
probability mass functions and show how their variability 
affect the uncertainty in the so-called 'fixed' baseline 
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integer least-squares and integer bootstrapping. It is 
shown that the integer least-squares principle maximizes 
the probability of correct integer estimation. Sharp and 
easy-to-compute bounds are given for both the ambiguity 
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0 Introduction 

G 
lobal Navigation Satellite System (GNSS) ambiguity 

resolution is the process of resolving the unknown cycle 

ambiguities of double difference (DD) carrier phase data 
as integers. It is the key to high precision GNSS positioning and 

navigation. The availability of a theory of integer inference is 

therefore a prerequisite for a proper handling and understanding 
of the various intricate aspects of carder phase ambiguity 

resolution. Although the theory of integer inference as a whole 

is unfortunately still far from mature, significant progress has 

been made in the last decade in the area of integer ambiguity 

estimation. This holds true for the computational aspects of 

integer estimation as well as for the corresponding probabilistic 

aspects. We now have a theoretical framework available which 

enables one to define integer estimators unequivocally, to 

compare their performance, to single-out optimal estimators, to 
judge the probabilistic consequences for the so-called 'fixed' 

baseline solution and to design measurement set-ups in 

accordance to specifications. In addition the framework has also 

enabled one to identify pitfalls in some of the earlier proposed 

methods of ambiguity resolution. It is the purpose of the current 
invited contribution to give a brief review of this probabilistic 

framework of integer estimation. The focus will be on integer 

least-squares estimation and some closety related integer 
estimation principles. The presentation will be non-Bayesian 
throughout. For a Bayesian approach to ambiguity resolution we 
refer to e.g. Ref.[l-3]. The presentation will also not touch upon 

the theory of integer validation, a theory which unfortunately is 

still in its infancy. But some first results, as reported in Ref.[3,4], 

will be given. 

The practical importance of carrier phase ambiguity 

resolution becomes clear when one realizes the great variety of 

current and future GNSS models to which it applies. These 

models may differ greatly in complexity and diversity. They 
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range from single-baseline models used for kinematic 

positioning to multi-baseline models used as a tool for 

studying geodynamic phenomena. The models may or 

may not have the relative receiver-satellite geometry 

included. They may also be discriminated as to whether 

the slave receiver(s) are stationary or in motion. When in 

motion, one solves for one or more trajectories, since 

with the receiver-satellite geometry included, one will 

have new coordinate unknowns for each epoch. One may 

also discriminate between the models as to whether or 

not the differential atmospheric delays (ionosphere and 

troposphere) are included as unknowns. In the case of 

sufficiently short baselines they are usually excluded. 

Apart from the current Global Positioning System 

(GPS) models, cartier phase ambiguity resolution also 

applies to the future modernized GPS and the future 

European Galileo GNSS. An overview of GNSS models, 

together with their applications in surveying, navigation, 

geodesy and geophysics, can be found in textbooks such 

as Ref.[6-11 ]. 

In the present contribution we emphasize the 

probabilistic aspects of integer ambiguity estimation. 

This contribution is organized as follows. In Section 1 

we introduce a general class of integer ambiguity 

estimators, determine their probability mass functions 

and show how their variability affect the uncertainty in 

the computed GNSS baselines. This theory is worked out 

in Sections 2 and 3 for two of the most important integer 

ambiguity estimators. We refrain from giving proofs of 

the theorems and corollaries. For these proofs we refer to 

the referenced literature, tn Section 2 we discuss the 

properties of integer bootstrapping and in Section 3 

those of integer least-squares. The properties of these 

two estimators are compared. It is shown that integer 

least-squares maximizes the probability of correct 

integer estimation. We also give sharp and 

easy-to-compute bounds for the ambiguity success rate. 

In the final Section 4 we present the joint pdf of the 

'float' and 'fixed' ambiguities and from it determine the 

pdf of the ambiguity residuals. 

1 Integer Ambiguity Resolution 

1.1 The GNSS Model 
As our point of departure we will take the following 

system of linear(ized) observation equations 

y = Aa  + B b  + e (!) 

where y is the given GNSS data vector of order m, a and 

b are the unknown parameter vectors respectively of 
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order n and p, and where e is the noise vector, A and B 

are the corresponding design matrices. In principle all 

the GNSS models can be cast in this frame of 

observation equations. The data vector y will usually 

consist of the 'observed minus computed' singleor 

dual-frequency double-difference (DD) phase and/or 

pseudorange (code) observations accumulated over all 

observation epochs. The entries of vector a are then the 

DD carrier phase ambiguities, expressed in units of 

cycles rather than range. They are known to be 

integers, a ~ Z n. The entries of the vector b will consist 

of the remaining unknown parameters, such as for 

instance baseline components (coordinates) and possibly 

atmospheric delay parameters (troposphere, ionosphere). 

They are known to be real-valued, b ~ R p 

The procedure which is usually followed for 

solving the GNSS model (1), can be divided into three 

steps. In the first step one simply disregards the integer 

constraints a a ~ Z n on the ambiguities and performs 

a standard least-squares adjustment. As a result one 

obtains the (real-valued) estimates of a and b, together 

with their variance-covariance (vc-) matrix 

' Qga Q~; J (2) 

This solution is referred to as the 'float' solution. In 
the second step the 'float' ambiguity estimate t~ is used 

to compute the corresponding integer ambiguity 

estimated. This implies that a mapping S : R " ~  Z " ,  

from the n-dimensional space of reals to the 

n-dimensional space of integers, is introduced such that 

= s ( f i )  (3) 

Once the integer ambiguities are computed, they are 

used in the third step to finally correct the 'float' 

estimate of b. As a result one obtains the 'fixed' solution 
/~=/~ -1 ^ 

- Qi, aQa (a  - g~) (4) 

In the present review we will primarily focus our 

attention on the probabilistic properties of Eq.(3) and 

Eq.(4). 

1.2 Admissible Integer Estimation 
There are many ways of computing an integer 

ambiguity vector t~ from its real-valued counterpart (~ 

To each such method belongs a mapping S : R " ~  Z" 

from the n-dimensional space of real numbers to the 

n-dimensional space of integers. Due to the discrete 

nature of Z", the map S will not be one-to-one, but 

instead a many-to-one map. This implies that different 

real-valued ambiguity vectors will be mapped to the 
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same integer vector. One can therefore assign a subset 

S. c R" to each integer vector Z E Z"  : 

S ={xeR"lz=S(x)} , zeZ"  (5) 

The subset S~ contains all real-valued ambiguity 

vectors that will be mapped by S to the same integer 

vector Z E Z"  . This subset is referred to as the pull-in 

region of z (see Fig.l). It is the region in which all 

ambiguity 'float' solutions are pulled to the same 'float' 

ambiguity vector z. 

Fig.1 An ambiguity pulMn region of Z = 

Using the pull-in regions, one can give an explicit 

expression for the corresponding integer ambiguity 

estimator. It reads 

= Z z s = ( f )  (6) 
z E Z  n 

with the indicator function: 

{10 if ~ E S -  
sz(a)  = otherwise 

Since the pull-in regions define the integer 

estimator completely, one can define classes of integer 

estimators by imposing various conditions on the pull-in 

regions. One such class is referred to as the class of 

admissible integer estimators. This class was introduced 

in Ref.[12] and it is defined as follows. 

Definition 1 The integer estimator ~ = Z z~z" ZS z (?t) 

is said to be admissible if 

l) U S: = R" 
n ZE Z 

2) Int ( Sz, ) ~ Int ( S~ ),t=0, Vz~, z2 ~ Z ~, Zl ;~ zz 

3) S = z + So, Vz  E Z" 

This definition is motivated as follows (see Fig.2). 

Each one of the above three conditions describes a 

property of which it seems reasonable that it is possessed 

by an arbitrary integer ambiguity estimator. The first 

condition states that the pull in regions should not leave 

any gaps and the second that they should not overlap. 

The absence of gaps is needed in order to be able to map 

any 'float' solution ~ E R ~ to Z ~ , while the absence 

of overlaps is needed to guarantee that the 'float' 

solution is mapped to just one integer vector. Note that 

we allow the pull-in regions to have common boundaries. 

This is permitted if we assume to have zero probability 

that fi lies on one of the boundaries. This will be the 

case when the probability density function (pdf) of fi is 

continuous. 

Fig.2 Pull-in regions that cover R" without gaps and overlaps 

The third and last condition of the definition follows 

from the requirement that S(x + z) = S(x)+ z, Vxe  R", 

z e  Z"(see  Fig.3). Also this condition is a reasonable 

one to ask for. It states that when the 'float' solution is 

perturbed by z e Z" ,  the corresponding integer solution 

is perturbed by the same amount. This property allows 

one to apply the integer remove-restore 

technique: S(c] - z) + z = S( f i ) .  It therefore allows one 

to work with the fractional parts of the entries of  fi ,  

instead of with its complete entries. 

Fig.3 An example of integer translational invariant pulMn 

regions that cover R" without gaps and overlaps 

With the division of R" into mutually exclusive 

pull-in regions, we are now in the position to consider 

the distribution of ~ .  This distribution is of the discrete 

type and it will be denoted as P ( a = z ) .  It is a 

probability mass function, having zero masses at 

non-grid points and nonzero masses at some or all grid 

points. If we denote the continuous probability density 

function of (] as p ~ ( x ) ,  the distribution of 

follows as 

P ( ~ = z ) =  [o p~(x)dx, z ~ Z "  (7) 
z 
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This expression holds for any distribution the 'float' 
ambiguities fi might have. In most GNSS applications 

however, one assumes the vector of observables y to be 
normally distributed. The estimator fi is therefore 

normally distributed too, with mean a ~  Z"  and 

vc-matrix Q~. Its probability density function reads 

pa(x) = 1 1 exp{-lllx-allQg } (8) 
~ ) ( 2 n ) i ,  2 

with the squared weighted norm II �9 I[Qa = (.)z Qa-l (.) 

Note that P ( a = a )  equals the probability of correct 

integer ambiguity estimation. It describes the expected 

success rate of GNSS ambiguity resolution. 
1.3 The Baseline Solution 

We are now in the position to determine the pdf of 
the 'float' baseline estimator Eq.(4). In order to 

determine this pdf, one needs to propagate the 

uncertainty of the 'float' solution, ~ and b ,  as well as 

the uncertainty of the integer solution 8 through Eq.(4). 

Should one neglect the random character of the integer 

solution and therefore consider the ambiguity vector 

as deterministic and equal to, say, z, then the pdf of 

/~ would equal the conditional baseline distribution 

p~m(xlz)-  1 I exp{- l l lx-b(z) l lQ~} (9) 

d ~  Qt;,e (2R)~p 

with conditional mean b(z) = b -  Qi, aQTa I (a - z), 

conditional variance matrix Qt;la = Qt; -1 -Q[,aQa Q~ and 

II I1~,= v -l �9 = (') Q~I~(')" However, since ~ is random and 

not deterministic, the conditional baseline distribution 
will give a too optimistic description of the quality of the 
'fixed' baseline�9 To get a correct description of the 
'fixed' baseline's pdf, the integer ambiguity's pmf needs 
to be considered. As the following theorem shows this 
results in a baseline distribution, which generally will be 
multi-modal. 
Theorem 1 (Pdf of the 'float' baseline) Let the 'float' 

solution, ~ and b ,  be normally distributed with mean 

a ~ Z"  and mean b ~ R P, and vc-matrix Eq.(2), let 

be an admissible integer estimator and let the 'fixed' 

baseline /~ be given as in Eq.(4). The pdf of /~ reads then 

Pi, (x) = ~,~ Pi,a (x I z)P(a = z) (10) 
z E Z  n 

Note that, although the model Eq.(1) is linear and 

the observables normally distributed, the distribution of 

the 'fixed' baseline is not normal, but multi-modal (see 

Fig.4). As the theorem shows, the 'fixed' baseline 

distribution equals an infinite sum of weighted 

conditional baseline distributions. These conditional 

baseline distributions pi,r are shifted versions 

of one another. The size and direction of the shift is 

governed by Qga Q~l z, z ~ Z" .  Each of the conditional 

baseline distributions in the infinite sum is 

down-weighted. These weights are given by the 

probability masses of the distribution of the integer 

ambiguity estimator ~.  This shows that the dependence 

of the 'fixed' baseline distribution on the choice of 

integer estimator is only felt through the weights 

P(~ = z)�9 

02~r 

06 02O 

0 1 5  
0 5  

0 1 0  !~ 
~ 

02  

O3 

~ -4 -3  -2 . I  0 I 2 3 4 

R a n ~  (m) 

Fig.4 An example of the multi-modal pdf of /~ and 

corresponding uni-modal pdf of /~ 

1.4 On the Quality of the 'Fixed' Baseline 
In order to describe the quality of the 'fixed' 

baseline, one would like to know how close one can 

expect the baseline estimate /~ to be to the unknown, 

but true baseline value b. As a measure of confidence, 
we take 

P(bE R)=IRp6(x)dx ,with R c R  p (11) 

But in order to evaluate this integral, we first need 
to make a choice about the shape and location of the 
subset R. Since it is common practice in GNSS 

positioning to use the vc-matrix of the conditional 

baseline estimator as a measure of precision for the 

'fixed' baseline, the vc-matrix Qgta will be used to 

define the shape of the confidence region. For its 

location, we choose the confidence region to be centered 

at b. After all, we would like to know by how much the 

baseline estimate /~ can be expected to differ from the 

true, but unknown baseline value b. That is, one would 

like Eq.(l 1) to be a measure of the baseline's probability 
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of concentration about b. 

With these choices on shape and location, the 

region R takes the form 

R={xE R p I(x-b)Tazb~(x-b) ~ r2  } (12) 

The size of the region can be varied by varying f t .  

The following theorem shows how the baseline's 

probability of concentration Eq.(11) can be evaluated as 

a weighted sum of probabilities of noncentral Chi-square 

distributions. 
Theorem 2 (The 'fixed' baseline's probability of 

concentration) Let b be the 'fixed' baseline estimator, 

let R be defined as in Eq.(12), and let Z2(p, )~: )  

denote the noncentral Chi-square distribution with p 

degrees of freedom and non-centrality parameter ~ , .  

Then 

P(b6 R)= EP(z2(p ,~ )  <~ f l2 )p(6= z) (13) 
ZEZ n 

with 

Z z =IIV/~z I1~ and V[~ =Qi, aQr~'(z-a) 

This result shows that the probability of the 'fixed' 

baseline lying inside the ellipsoidal region R centered at 

b equals an infinite sum of probability products. If one 

considers the two probabilities of these products 

separately, two effects are observed. First the 
probabilistic effect of shifting the conditional baseline 

estimator away from b and secondly the probabilistic 

effect of the peakedness or non-peakedness of the 

ambiguity pmf. The second effect is related to the 

expected performance of ambiguity resolution, while the 

first effect has to do with the sensitivity of the baseline 

for changes in the values of the integer ambiguities. This 

effect is measured by the non-centrality parameter ~: .  

Since the tail of a noncentral Chi-square distribution 
becomes heavier when the noncentrality parameter 
increases, while the degrees of freedom remain fixed, 
P(zZ(p,~,~) <~ 13z) gets smaller when ~,  gets larger. 

The two probabilities in the product reach their 

maximum values when z=a. The following corollary 
shows how these two maxima can be used to lower 

bound and to upper bound the probability P(/~ E R).  

Such bounds are of importance for practical purposes, 

since it is difficult in general to evaluate Eq.(13) exactly. 

Corollary 1 (Lower and upper bounds) Let b be the 

'fixed' baseline estimator and let R be defined as in 

Eq.(12). Then 

P(~.~ E R)P(~ = a) <~ P(bE R) <~ P(~=~ ~ R) (14) 

with 

P(/~: ,  ~ R)= P(Z2(p,O) ~ ~" 

Note that the two bounds relate the probability of 

the 'fixed' baseline estimator to that of the conditional 

estimator and the ambiguity success rate. The above 

bounds become tight when the ambiguity success rate 
approaches one, This shows, although the probability of 

the conditional estimator always overestimates the 

probability of the 'fixed' baseline estimator, that the two 

probabilities are close for large values of the success rate. 

This implies that in case of GNSS ambiguity resolution, 

one should first evaluate the success rate P(t2 = a)  

and make sure that its value is close enough to one, 

before making any inferences on the basis of the 

distribution of the conditional baseline estimator. In 

other words, the (uni-modal) distribution of the 

conditional estimator is a good approximation to the 
(multi-modal) distribution of the bootstrapped baseline 

estimator, when the success rate is sufficiently close to one. 

2 Integer Bootstrapping 

2.1 The Bootstrapped Estimator 
The distributional results presented so far hold for 

any admissible ambiguity estimator. The simplest way to 

obtain an integer vector from the real-valued 'float' 
solution is to round each of the entries of c] to its 

nearest integer. The corresponding integer estimator 

reads therefore 

6 R = ([ill 1..., It], ]) T (15) 

where '[.]' denotes rounding to the nearest integer. The 

pullin region of this integer estimator equals the 

multivariate version of the unit square (see Fig.3). 

Another relatively simple integer ambiguity 

estimator is the bootstrapped estimator. The bootstrapped 
estimator can be seen as a generalization of the previous 
estimator, Ref.[13] and Ref.[14]. It still makes use of 
integer rounding, but it also takes some of the correlation 
between the ambiguities into account. The bootstrapped 

estimator follows from a sequential conditional 

least-squares adjustment and it is computed as follows. If 

n ambiguities are available, one starts with the first 

ambiguity &~, and rounds its value to the nearest 

integer. Having obtained the integer value of this first 

ambiguity, the real-valued estimates of all remaining 

ambiguities are then corrected by virtue of their 

correlation with the first ambiguity. Then the second, but 

now corrected, real-valued ambiguity estimate is 
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rounded to its nearest integer. Having obtained the 

integer value of the second ambiguity, the real-valued 
estimates of all remaining n - 2  ambiguities are then 
again corrected, but now by virtue of their correlation 
with the second ambiguity. This process is continued 
until all ambiguities are considered, We thus have the 
following definition. 
Definition 2 (Integer bootstrapping) Let ~ = (t]~ , . . . ,h ,  )T 

E Z"  be the ambiguity 'float' solution and let 

~s = (tTS,l,...,~s,,) T ~ Z ~ denote the corresponding 

integer bootstrapped solution. The entries of the 
bootstrapped ambiguity estimator are then defined as 

aBol = l O l l  

1 as,. = [a.,u ]= a . -EG. . juG~u(a ju-a~ , : )  (16) 
j=l 

where '[.]' denotes the operation of rounding to the 

nearest integer, and O'~.iu denotes the covariance 

between ai and a ju  ,and O'jl: is the variance of 

a:u �9 The shorthand notation 3,~t stands for the ith 

least-squares ambiguity obtained through a conditioning 
on the previous I = {1,'", (i-1)} g sequentially rounded 
ambiguities. 

Note that the bootstrapped estimator is not unique. 
Changing the order in which the ambiguities appear in 
vector & will already produce a different bootstrapped 
estimator. Although the principle of bootstrapping 

remains the same, every choice of ambiguity 
parameterization has its own bootstrapped estimator. 
2.2 The Bootstrapped Pull-in Regions 

The pull-in regions for rounding are unit cubes 
centered at integer grid points. For bootstrap ping the 
shape of the pull-in regions will depend on the vc-matrix 
of the ambiguities. They will coincide with the unit 
cubes only in case the vc-matrix is a diagonal matrix. 
Bootstrapping reduces namely to rounding in the 
absence of any correlation between the ambiguities. The 
following theorem gives a description of the 
bootstrapped pull-in regions in the general case. 

Theorem 3 (Bootstrapped pull-in regions) The pull-in 
regions of the bootstrapped ambiguity estimator 6s = 

(as,1 . . . ~ , , ) T  ~ Z ~ are given as 

S~, z ={x~ R ~ IIc~U~(x- z)l < 1 ,  

i= l , . . . ,n} ,  V z ~ Z "  (17) 

where L denotes the unique unit lower triangular matrix 
of the ambiguity vc-matrix decomposition Qa = LDL v 
and ci denotes the ith canonical unit vector having a 1 as 
its ith entry and zeros otherwise. 

That the bootstrapped estimator is indeed 
admissible, can now be seen as follows. The first two 
conditions of Definition 1 are easily verified using the 
definition of the bootstrapped estimator. Since every 

real-valued vector c~ will be mapped by the 
bootstrapped estimator to an integer vector, the pull-in 
regions SB. z cover R" without any gaps. There is 
also no 
overlap between the pull-in regions, since - apart from 
boundary ties-any real-valued vector fi is mapped to 
not more than one integer vector. To verify the last 
condition of Definition 1, we make use of Eq.(17). From 

1 
SB, ~ ={x~ R" UcTi UI (x - z ) I  <~ 2 

i= l , . . . ,n}  

={x6 R" Ilc~L-lyl < 1 ,  
2 

x = y + z,i = l,...n} 

= {S~,0 + z} 

it follows that all bootstrapped pull-in regions are 
translated copies of SB,0. All pull-in regions have 
therefore the same shape and the same volume. Their 
volumes all equal 1. This can be shown by transforming 

$8,0 to the unit cube centered at the origin. Consider the 
linear transformation y = L-~x. Then 

Lq(S~o)={y~ R" II ciTYl < 1  i= l , . . . , n}  
' 2 '  

equals the unit cube centered at the origin. Since the 
determinant of the unit lower triangular matrix Z -1 

equals one and since the volume of the unit cube equals 
one, it follows that the volume of SB,0 must equal one as 
well. To infer the shape of the bootstrapped pull-in 
region, we consider the two dimensional case first. Let 
the lower triangular matrix L be given as 

1, :1 
T h e n  

Ss, o = { x e  R 2 II cT Ulxl <~1,i=1,2} 
2 

1 1 
={xE R 2 1 1 x l l ~ , l x  2 -lxtl~} 

which shows that the two-dimensional pull-in region 

7 6  t �84 ~'-,~ "i~'~'::-~::;'.,, .7, ~.-- r:-:: .~*, ' : .~> : , '  :~-': ~ . ~ " :  * ~ , i ,  - :  : ~ : -  ~ : . - - "  �9 ' , ~  



equals a parallelogram (see Fig.5). Its region is bounded 
by the two vertical lines Xl = 1/2 and Xl = -1/2, and the 
two parallel slopes x2 = lxl+l/2 and x2 = /Xl-1/2. The 

direction of the slope is governed by l= O'210"12 . Hence, 

in the absence of correlation between the two ambiguities, 
the parallelogram reduces to the unit square. In higher 
dimensions the above construction of the pull-in region 
can be continued. In three dimensions for instance, the 

intersection of the pull-in region with the XlX2-plane 
remains a parallelogram, while along the third axis the 
pull-in region becomes bounded by two parallel planes. 

,t l 

1 

Fig.5 The two-dimensional pull-in regions of integer 
bootstrapping 

2.3 The  B o o t s t r a p p e d  pmf  

Since the integer bootstrapped estimator is defined 

as ~s = Z r a ~ S~, z, it follows that P(aB = Z) = 

P(~  ~ SB, ~ ). The pmf of a8 follows therefore as 

P ( ~ B = z ) = [  Pa(x)dx, z E Z  ~ (18) 
B,Z 

Hence, the probability that tT, coincides with z is 

given by the integral of the pdf pa(x) over the 

bootstrapped pull-in region $8, z c R".  The above 

expression holds for any distribution the 'float' 
ambiguities ~ might have. In most GNSS applications 

however, one usually assumes the vector of observables 
y to be normally distributed. For that case the following 
theorem gives an exact expression of the bootstrapped 
pmf (see Fig.6). 
Theorem 4 (The integer bootstrapped pmf) Let t] be 
distributed as N(a, Qa),ae Z ~, and let a8 be the 
corresponding integer bootstrapped estimator. Then 

n T .'r 

P(tit~ = z) = l"I  [~ ( 1 - 2li' (a - ,.).) 
i=1 2~ 

+~(l+2l~(a-z) . ) - l] ,zeZ" (19) 
2cra,~ 

2 .  
I 

o, 1 O5 

. 

-I 

Fig.6 (top) The two-dimensional pdf of the 'float' solution d 

situated over the bootstrapped pull-in regions; (bottom) the 
two-dimensional pmf of the integer bootstrapped solution aB 

= i *  1 1 2 with ~ (x )  _- - ~ - e x p { - ~ v  }(Iv 

and with li the ith column vector of the unit lower triangular 

matrix L -T and 0"3 the variance of the ith least-squares 
aill 

ambiguity obtained through a conditioning on the previous 
I = {1,---,(i-1)} ambiguities. 

The bootstrapped pmf equals a product of 
univariate pmf's and is therefore easy to compute. Note 
that the bootstrapped pmf is completely governed by the 

ambiguity vc-matrix Qa. The pmf follows once the 

triangular factor L and the diagonal matrix D of the 

decomposition Qa =LDLT are given. The above 

result also shows that the bootstrapped pmf is symmetric 
about the mean of ~.  This implies that the bootstrapped 

estimator as  is an unbiased estimator of a ~ Z n . 

Since the 'float' solutions, ~ and /~, are unbiased too, 

it follows from taking the expectation of Eq.(4) that the 
bootstrapped baseline is also unbiased. 

For the purpose of predicting the success of 
ambiguity resolution, the probability of correct integer 
estimation is of particular interest. For the bootstrapped 
estimator this success rate is given in the following 
corollary. 
Corollary 2 (The bootstrapped success rate) The boots- 
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trapped probability of correct integer estimation (the 

success rate) is given as 

P(g*e = a) = 1-I[24~( ) - 11 (20) 
i=1 ZO'~,l / 

The method of integer bootstrapping is easy to 

implement and it does not need, as opposed to the 

method of integer leastsquares (see next section), an 

integer search for computing the sought for integer 

solution. However, as it was mentioned earlier, the 

outcome of bootstrapping depends on the chosen 

ambiguity parameterization. Bootstrapping of DD 

ambiguities, for instance, will produce an integer 

solution which generally differs from the integer solution 

obtained from bootstrapping of reparameterized 

ambiguities. Since this dependency also holds true for 

the bootstrapped pmf, one still has some important 

degrees of freedom left for improving Eq.(20). 

In order to improve the bootstrapped success rate, 

one should work with decorrelated ambiguities instead 

of with the original ambiguities. The method of 

bootstrapping performs relatively poor, for instance, 

when applied to the DD ambiguities. This is due to the 

usually high correlation between the DD ambiguities. 

Bootstrapping should therefore be used in combination 

with the decorrelating Z-transformation of the 

LAMBDA method, see Ref.[15],[16]. This transforma- 

tion decorrelates the ambiguities further than the best 

reordering would achieve and thereby reduces the values 

of the sequential conditional variances. By reducing the 

values of the sequential conditional variances, the 

bootstrapped success rate gets enlarged. 

It may however happen that it is simply not possible 
to resolve the complete vector of ambiguities with 

sufficient probability. As an alternative of resolving the 
complete vector of ambiguities, one might then consider 

resolving only a subset of the ambiguities. The idea of 

partial ambiguity resolution is based on the fact that the 
success rate will generally increase when fewer integer 

constraints are imposed. However, in order to apply 

partial ambiguity resolution, one first will have to 

determine which subset of ambiguities to choose. It will 

be clear that this decision should be based on the 

precision of the 'float' ambiguities. The more precise the 

ambiguities, the larger the ambiguity success rate. It is at 

this point where the decorrelation step of the LAMBDA 

method and the bootstrapping principle can be applied. 

Once the transformed and decorrelated ambiguity 

vc-matrix is obtained, the construction of the subset 

proceeds in a sequential fashion. One first starts with the 

most precise ambiguity, say ~ ,  and computes its 

success rate P(a] = Zl). If this success rate is large 

enough, one continues and determines the most precise 

pair of ambiguities, say (z-l, Z2). If their success rate 

is still large enough, one continues again by trying to 

extend the set. This procedure continues until one 

reaches a point where the corresponding success rate 

becomes unacceptably small. When this point is reached, 

one can expect that the previously identified ambiguities 

can be resolved successfully. 
Once the subset for partial ambiguity resolution has 

been identified, one still needs to determine what this 

will do to improve the baseline estimator. After all, being 
able to successfully resolve the ambiguities does not 

necessarily mean that the 'fixed' solution is significantly 

better than the 'float' solution. The theory presented in 

the previous sections provides the necessary tools for 

performing such an evaluation. 

3 Integer Least-Squares 

3.1 The ILS Estimator 
When using the least-squares principle, the GNSS 

model can be solved by means of the minimization 

problem 

min l l  y - A a - B b l l  o , a ~  Z ' , b ~  R p (21) 
a ,b  .Y 

with Qy the vc-matrix of the GNSS observables. This 

type of least-squares problem was first introduced in 

Ref.[15] and has been coined with the term 'integer 

least-squares'. It is a nonstandard least-squares problem 
due to the integer constraints a ~ Z n, see Ref.[16],[17]. 

The solution of Eq.(21) is consistent with the three 

solution steps of section 1. This can be seen as follows. 
It follows from the orthogonal decomposition 

I1 y - Aa - Bb I1~, =11 ~ Jl~,, + II t] - a II~a 

+ [I/;(a) - b LI~ (22) 

with ~ = y - Aft - B/~ and /~(a) =/~ - QgaQT~ a (fi - a), 

that the sought for minimum is obtained when the 

second term on the right-hand side is minimized for 

a E Z n and the last term is set to zero. The integer 

least-squares (ILS) estimator of the ambiguities is 

therefore defined as follows. 
Definition 3 (Integer least-squares) Let~ = (~, . . . , f , )T 

R" be the ambiguity 'float' solution and let 
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aLS E Z" denote the corresponding integer least- 

squares solution. Then 

aLs = arg rain II f - z tI~ (23) 
s  n 

In contrast to integer rounding and integer 
bootstrapping, an integer search is needed to compute 

a t s .  Although we will refrain from discussing the 

computational intricacies of ILS estimation, the 

conceptual steps of the computational procedure will be 

described briefly. The ILS procedure is mechanized in 

the GNSS LAMBDA (Least-squares AMBiguity 

Decorrelation Adjustment) method, which is currently 

one of the most applied methods for GNSS carrier phase 

ambiguity resolution. For more information on the 

LAMBDA method, we refer to e.g. Ref.[15,16,18] or to 

the textbooks Ref.[6,10,11]. Practical results obtained 

with it can be found, for example, in Ref.[19-28]. 

The main steps as implemented in the LAMBDA 

method are as follows. One starts by defining the 

ambiguity search space 

I2 a = { a e  Z" I(f i-a)TQTal(~-a) <~Z a } (24) 

with Z 2 a to be chosen positive constant. The 

boundary of this search space is ellipsoidal. It is centered 

at ~ ,  its shape is governed by the vc-matrix Qa and 

its size is determined by Z 2 . In case of GNSS, the 

search space is usually extremely elongated, due to the 

high correlations between the ambiguities. Since this 

extreme elongation usually hinders the computational 

efficiency of the search, the search space is first 

transformed to a more spherical shape, 

.(2 a ={Ze Z" I ( ~ - z ) T Q f l ( ~ - Z )  ~ 2  '2 } (25) 

using the admissible ambiguity transformations s = ZTfi, 

Qa = ZTQaZ. Ambiguity transformations Z are said to 

be admissible when both Z and its inverse Z -~ have 
integer entries. Such matrices preserve the integer nature 
of the ambiguities. In order for the transformed search 

space to become more spherical, the volume-preserving 

Z-transformation is constructed as a transformation that 

decorrelates the ambiguities as much as possible. Using 

the triangular decomposition of Q~, the left-hand side 

of the quadratic inequality in Eq.(25) is then written as a 

sum-of-squares: 

~ (~i,~ - z ~ )  2 
-; ~< Z 2 (26) 

i:l (~ ill 

On the left-hand side one recognizes the conditional 

leastsquares estimator ,~,i~1, which follows when the 

conditioning takes place on the integers Zj, Z2 . . . . .  Z,-_j. 

Using the sum-ofsquares structure, one can finally set up 

the n intervals which are used for the search. These 

sequential intervals are given as 
(Zl -- Zl)2 ~ a ? X 2  

_ ~ )2  ~< 2 ( ~ ,  - z ~ ) 2  
(Z211 ~2 "-< 0.211 (jq/~2 -- o" 2 ) (27) 

In order for the search to be efficient, one not only 

would like the vc-matrix Q~ to be as close as possible 

to a diagonal matrix, but also that the search space does 

not contain too many integer grid points. This requires 

the choice of a small value for Z 2, but one that still 

guarantees that the search space contains at least one 

integer grid point. Since the bootstrapped estimator is so 

easy to compute and at the same time gives a good 

approximation to the ILS estimator (see section 3.4), the 

bootstrapped solution is an excellent candidate for 

setting the size of the ambiguity search space. Following 

the decorrelation step ~ = Z T f ,  the LAMBDA-method 

therefore uses, as one of its options, the bootstrapped 

solution ZB for setting the size of the ambiguity search 

space as 

Z 2 = (z - z8 )T Q~1 (s _ zB ) (28) 

In this way one can work with a very small search 

space and still guarantee that the sought for integer 

least-squares solution is contained in it. 

3.2 The ILS Pull-in Region 
The pull-in regions of integer rounding are unit 

cubes, while those of integer bootstrapping are 

multivariate versions of parallelograms. To determine 

the ILS pull-in regions we need to know the set of 'float' 

solutions fi E R" that are mapped to the same integer 

vector Z~ Z " .  This set is described by all xE  R" 

that satisfy z=argmin,~z. IIx-ull~ . The ILS 

pull-in region that belongs to the integer vector z follows 

therefore as 

2 <~llx_ull2o~,Vu~Z .} (29) S~z.: = {xe R" I I1 x -  z IIQa 

It consists of all those points which are closer to z 

than to any other integer point in/~.  The matric used for 

measuring these distances is determined by the vc-matrix 

Qa. Based on Eq.(29), one can give a representation of 

the ILS pull-in regions that resembles the representation 

of the bootstrapped pull-in regions. This representation 
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reads as follows. 

Theorem 5 (ILS pull-in regions) The pull-in regions of 

the ILS ambiguity estimator aLs E Z" are given as 

Sts_= cs {x sR" l l c~QZ~l (x - z ) l  
' ~  ciEZ 

<~ ]-II c, II~, },Vze Z" (30) 
2 

This shows that the ILS pull-in regions are 

constructed from intersecting half-spaces. One can also 

show that at most 2 ~ - 1 pairs of such half spaces are 

needed for constructing the pullin region. The ILS 

pull-in regions are convex, symmetric sets of volume 1, 

which satisfy the conditions of Definition 1. The ILS 

estimator is therefore admissible. The ILS pull-in regions 

are hexagons in the two-dimensional case (see Fig.7). 

i 

Fig.7 The two-~mensional ILS p~l-in regions 

3.3 Maximizing the Success Rate 
Although various integer estimators exist which are 

admissible, some may be better than others. Having the 

problem of GNSS ambiguity resolution in mind, one is 

particularly interested in the estimator which maximizes 
the probability of correct integer estimation. This 

probability equals P( t i  = a), but it will differ for 

different ambiguity estimators. The following theorem, 

due to Ref.[29], shows that the ILS estimator maximizes 

the probability of correct integer estimation. 

Theorem 6 (ILS is optimal) Let the pdf of the 'float' 

solution fi be given as 

p,  (x) = x/det(as ~ )G(II x - a I1~ ) (31) 

where G : Rk--~ [0,oo) is decreasing and Qa is 

positivedefinite. Then 

P(~LS = a) >~ P(6 = a) (32) 

for any admissible estimator tT. 

This theorem gives a probabilistic justification for 

using the ILS estimator. For GNSS ambiguity resolution it 

shows, that one is better off using the ILS estimator than 

any other admissible integer estimator. The family of 
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distributions defined in Eq.(31), is known as the family of 

elliptically contoured distributions. Several important 

distributions belong to this family. The multivariate normal 

distribution can be shown to be a member of this family by 

choosing G(x) =(2~) ~ exp(- x), x ~  R. Another 

member is the multivariate t-distribution. 

As a direct consequence of the above theorem we 

have the following corollary. 

Corollary 3 (The effect of the weight matrix) Let ~ be 

any positive-definite matrix of order n and define 

az = arg min II & - z II 2 , (33) 
z~Z n 

Then (5 z is admissible and 

P(aLs = a) >1 P(gt z = a) (34) 

In order to prove the corollary, we only need to 

show that tTx is admissible. Once this has been 

established, the stated result Eq.(34) follows from 

theorem 6. The admissibility can be shown as follows. 

The first two conditions of Definition 1 are satisfied, 

since the ILS-map produces - apart from boundary ties - 

a unique integer vector for any 'float' solution ~ E R n . 

And since 6 z = a rgmin  z, II & - u  - z I1~ +u holds 

true for any integer u ~  Z n , also the integer 

remove-restore technique applies. 

As the corollary shows, a proper choice of the data 

weight matrix is also of importance for ambiguity 

resolution. The choice of weights is optimal when the 

weight matrix equals the inverse of the ambiguity 

vc-matrix. A too optimistic precision description or a too 

pessimistic precision description, will both result in a 
less than optimal ambiguity success rate. In the case of 

GNSS, the observation equations (the functional model) 

are sufficiently known and well documented. However, 

the same can not yet be said of the vc-matrix of the 

GNSS data. In the many GNSS textbooks available, we 

will usually find only a few comments, if any, on this 

vc-matrix. Examples of studies that have been reported 

in the literature are: Ref.[30-33], who studied the 

elevation dependence of the observation variances; 

Ref.[25,34], who considered time correlation and cross 

correlation; and Ref.[35-37], who considered the 

inclusion of stochastic ionospheric constraints. 

3.4 Bounding the IkS Success Rate 
A very useful application of theorem 6 is that it 

shows how one can lower bound the ILS probability of 

correct integer estimation. This is particularly useful 

since the ILS success rate is usually difficult to compute. 
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This is due to the rather complicated geometry of the 

ILS pull-in region. The bootstrapped success rate is a 
good candidate for the ILS success rates' lower bound. 

The bootstrapped success rate is easy to compute and it 

becomes a sharp lower bound when applied to the 

decorrelated ambiguities ~ = ZT&. In fact, at present, 

the bootstrapped success rate is the sharpest available 

lower bound of the ILS success rate. 

Apart from having a lower bound, it is also useful 

to have an upper bound available. For obtaining an upper 

bound one can make use of the geometric mean of the 
ambiguity conditional variances. This geometric mean is 

referred to as the Ambiguity Dilution of Precision 

(ADOP) and it is given as 
1 

ADOP = ~ "  (cycles) (35) 

Note that this scalar measure of the ambiguity 

precision is invariant for the admissible volume 

preserving ambiguity transformations. With the ADOP 

one can obtain an upper bound by making use of the fact 

that the probability content of the ILS pull-in region Sts:~ 
would be maximal if its shape would coincide with that 

of the ambiguity search space, while its volume would 

still be constrained to 1. We have the following bounds 

for the ILS success rate. 

Theorem 7 (Bounds on the ILS success rate) The ILS 

success rate P(a t s  = a)  is bounded from below and 

from above as 

P('iB = z) <~ P(glts = a) <~ (Z2(n,O) ~< ADOP 2 c "  ) (36) 

n n 2/n 
with c.=(-~F(-~)) /re 

4 The PDF of the Ambiguity Resi- 
duals 

Having determined the various probabilistic 

properties of the 'fixed' ambiguities and 'fixed' baseline 

solution, we are now in a position to draw our attention 
to the ambiguity residuals. In order to determine their 

pdf, we first need the the joint distribution of the 'float' 
ambiguities, fi ,  and the 'fixed' ambiguities, ~ .  The 
joint distribution of fi and 6 will be denoted as 

p,~,~ (x, Z). We have the following result. 

Theorem 8 (The joint distribution of 'float' and 'fixed' 

ambiguities) Let p,~ (x) be the pdf of fi and let the 

integer ambiguity estimator be defined as 

= ~_,_~z o ZS~ ( f ) ,  with s~(x) the indicator function of 

the pull-in region S c R n , z � 9  Z ~. The joint 

distribution of fi and ti is then given as 

pa,6(x ,z )= p a ( x ) s : ( x ) , x � 9  R n , z � 9  Z n (37) 

For the proof we refer to Ref.[4]. 

The joint distribution Eq.(37) can be used to 

determine the distribution of functions of fi and ~.  

An important example of such a function is the 

ambiguity residual. We define it as 

= h - ~ (38) 
We will determine the distribution of g in two 

steps. We first determine the joint distribution of g and 

and then determine the marginal distribution Pe (x) 

by means of summation. In deriving the joint distribution, 

we make use of the following transformation law for 

probability density functions. Let two random vectors u 

and v be related as v = Tu + t, with T and t known, and 

matrix T invertible. The pdf of v can then be expressed 

in the pdf of u as Pv (v) ---I detT -1 I p, (T -1 (v - t)). 

By using the invertible transformation 

we can express the joint distribution of ~ and ~ in 

the joint distribution of ~ and ~ .This gives Pe,~ (x, z ) .  

= Pa,~ (x + Z, z) .  If we now make use of Eq.(37), we 

obtain Pe,~ (x, Z) = Pa (x + Z)S o (x), x �9 R" ,  z �9 Z" . 

The pdf of the ambiguity residuals follows then from 

summing this joint distribution over all integers, 

Pe (x) = ~ p~ (x + Z)S o (x), x ~ R" ,  z ~ Z" (39) 
z E Z  n 

In order to show how the distribution of the 

ambiguity residuals is constructed from the distribution 

of the 'float' ambiguities, a visualization of the steps 
involved is given in Fig.8 for the one-dimensional case 

(n = 1). This figure shows the four distributions, p~ (x) 

(top left), Pa,,i (x, Z) (top right), Pe.a (x, Z) (bottom 

left) and pc(x)  (bottom right). For each integer 

Z �9 Z"  the joint distribution Pa,a (x, Z) is composed 

of slices from the marginal distribution Pa (x) located 

at (z, z). Translating these slices parallel to the x-axis to 

the line x=0 gives the joint Pe ,a (x ,z ) .  A further 

translation along the z-axis to the origin then finally 

provides p e ( x ) .  The distribution of the ambiguity 

residuals is clearly non-Gaussian. We have Pe (x) = 0 
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for all x E S O . This implies that the norm of the vector 

of ambiguity residuals is always bounded irrespective 
the values taken by the ambiguity 'float' solution h .For 
the one-dimensional case we have g = [ - 1 / 2 , + 1 / 2 ] .  

For the higher dimensional case the bound depends on 
the shape of the pull-in region and therefore on the type 

of integer estimator chosen. The fact that the ambiguity 
residuals are bounded has an important implication. It 
implies that the difference between the 'float' baseline 

solution /~ and the 'fixed' baseline solution /~ is also 

bounded, irrespective the values taken by the 'float' 
ambiguities (see Fig.9). 
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Fig.9 An example showing the bounded influence of the 

ambiguity residuals on the difference between the 'float' and 

'fixed' baseline solution 

The distribution p~(x) can have different shapes. 
There are two extreme cases between which one can 
discriminate, namely the uniform distribution and the 
impulse function distribution. In order to understand 
these two extreme cases, consider what happens when 
the precision of the 'float' ambiguities, and thereby the 
peakedness of p~(x), is varied. When the 'float' 
distribution Pa (x) gets more peaked, which happens 
when the 'float' ambiguities get more precise, the pdf 
p~ (x)gets more peaked as well. However, since all the 

probability mass of pe (x) is located within the pull-in 
region So, the peakedness of p~ (x) will only start to 

manifest itself when pa (x) is sufficiently peaked in 
relation to the size of the pullin region. When this is not 
the case, the distribution of the ambiguity residuals will 
remain flat and therefore be close to So(X), which is the 
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uniform distribution for the pull-in region So. The 'float' 

distribution pa(x)  may be considered peaked in 

relation to the size of the pull-in region, when most of its 

probability mass is located within So.. This happens 

when the ambiguity success rate is sufficiently close to 

one, in which case the two distributions will also not 

differ by much. Further improvement of the precision of 

the ambiguities will then in the limit produce an impulse 

function for both p,~ (x) and Pe (x) (see Fig. 10 for 
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ambiguity residual, (right) pdf of corresponding 'float' ambiguity 

the one-dimensional case). The distribution of the 

ambiguity residuals is symmetric and independent of the 

unknown integer ambiguity vector a ~ Z ' .  It gets its 

symmetry inherited from the 'float' distribution Pa (x ) ,  

while the independence of a E Z "  follows from 

Zz~z ,  p a ( x + a +  z) Z:,Ez, p ~ ( x +  z) . The point 

of symmetry of the distribution is the origin. This 

implies that the mean of the ambiguity residual equals 

zero, 

E{g} = 0 (40) 

This result combined with the fact the pdf of ~ is 

completely known once the precision of the 'float' 

ambiguities is given and once the choice of integer 

ambiguity estimator is made, allows one for the first 

time to formulate rigorous tests for the integerness of the 

parameters. 
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