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Abstract  A method is presented for real-time validation of GNSS measurements of a single 

receiver, where data from each satellite are independently processed. A geometry-free 

observation model is used with a reparameterized form of the unknowns to overcome rank 

deficiency of the model. The ionosphere error and non-constant biases such as multipath are 

assumed changing relatively smoothly as a function of time. Data validation and detection of 

errors is based on statistical testing of the observation residuals using the 

Detection-Identification-Adaptation (DIA) approach. The method is applicable to any GNSS 

with any number of frequencies. The performance of validation method was evaluated using 

multiple-frequency data from three GNSS (GPS, GLONASS and Galileo) that span three days 

in a test site at Curtin University, Australia. Performance of the method in detection and 

identification of outliers in code observations and detection of cycle slips in phase data was 

examined. Results show that the success rate vary according to precision of observations and 

their number as well as size of the errors. The method capability is demonstrated when 

processing four IOV Galileo satellites in a single point positioning mode, and in another test by 

comparing its performance with Bernese software in detection of cycle slips in PPP processing 

using GPS data.  
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Introduction 

 

Successful GNSS software should include a pre-processing step for screening of data. During 

this pre-processing step the most severe irregularities in the data should be detected and if 

necessary repaired. Some techniques were presented for this purpose. For instance, the 

Receiver Autonomous Integrity Monitoring (RAIM) algorithms are generally based on 

checking consistency of solutions from different combinations of satellite data (Farrell and 

Van Graas 1992; Lee 2012). Other methods estimate cycle slips as additional unknowns in a 

least-squares or Kalman filtering processing (Banville and Langley 2010). Some methods used 

linear combinations of the observations or their time-difference to estimate cycle slips (Blewitt 

1990, Dai 2012). The Detection-Identification-Adaptation (DIA) is another method for quality 

control of single-baseline GNSS observations, which has been discussed in Teunissen (1990), 

Teunissen (1998), and De Jong and Teunissen (2000). De Bakker el al. (2009a) used the DIA 

method to investigate quality control of single-receiver single-satellite geometry-free model 

with a focus on the analysis of the Minimal Detectable Bias (MDB), which is a measure for the 

size of the errors that can be detected with a certain power and probability of false alarm. 

 

While most attention was given to validation of GPS observations, some studies consider 

multi-constellation GNSS. For instance, quality control of GPS with GLONASS was discussed 

in De Jong et al. (2001), and GPS with Galileo was considered in Ene et al. (2007); De Bakker 

el al. (2009b); and Neri et al. (2011). Most studies consider the case of dual-frequency 
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observations due to the fact that signals availability was limited to only GPS and GLONASS 

(e.g Kim and Langley 2002). Some recent studies consider triple frequencies from GPS or 

Galileo (e.g. Guo et al. 2011). With the availability of new systems such as BeiDou, QZSS as 

well as Galileo, research is still needed in modelling and validation of quadruple or more 

frequency observations. In addition, as the number of visible satellites is increasing due to the 

presence of multi-constellation GNSS systems, there will be an increased likelihood that 

multiple outliers may occur in the collected observations at one epoch. Detection of multiple 

outliers in the data has been discussed in Kok (1984) and Teunissen (1990), and for RAIM in 

Blanch et. al. (2010). 

 

In this contribution, a method is presented for validation of GNSS data using a 

single-receiver single-satellite approach and utilizing the DIA approach. The method is 

applicable for real-time or post-mission data processing. A re-parametrisation approach of the 

unknowns in a geometry-free model is presented and the used functional and dynamic 

modelling is discussed. The technique is applied for screening data of each satellite in an 

independent processing, i.e. one by one at each epoch and in a successive manner between 

epochs. 

 

The paper is organized as follows. First, the multi-frequency single-receiver single-satellite 

method is discussed. Next, examples of its performance for processing data of a continuously 

operating reference station is presented. Data from three GNSS, namely GPS, GLONASS and 

Galileo, collected simultaneously for three consecutive days will be checked. Finally, the 

performance of the method is demonstrated and conclusions are given. 

 

Single-Receiver Single-satellite Geometry-free Modelling 

  

The carrier phase and pseudorange observation equations of a single receiver that tracks a 

single satellite on frequency 𝑓𝑗  (for 𝑗  = 1 to 𝑛 ) at time instant 𝑡  read (Teunissen and 

Kleusberg 1998; Leick 2004; Kaplan 2006): 

 
𝜙𝑗(𝑡) = 𝜌(𝑡) + 𝑐(𝛿𝑡𝑟(𝑡) − 𝛿𝑡𝑠(𝑡)) + 𝑇(𝑡) − 𝜇𝑗𝐼(𝑡) + 𝑏𝜙𝑗

(𝑡) + 휀𝜙𝑗
(𝑡)

𝑝𝑗(𝑡) = 𝜌(𝑡) + 𝑐(𝛿𝑡𝑟(𝑡) − 𝛿𝑡𝑠(𝑡)) + 𝑇(𝑡) + 𝜇𝑗𝐼(𝑡) + 𝑏𝑝𝑗
(𝑡) + 휀𝑝𝑗

(𝑡)  (1) 

where 𝜙𝑗(𝑡) and 𝑝𝑗(𝑡) denote the observed carrier phase and pseudo ranges in distance units 

(m), respectively, with corresponding zero-mean noise terms 휀𝜙𝑗
(𝑡)  and 휀𝑝𝑗

(𝑡) . 𝜌(𝑡) 

denotes the receiver-satellite range, 𝑐  is the speed of light, 𝛿𝑡𝑟(𝑡)  and 𝛿𝑡𝑠(𝑡)  are the 

receiver and satellite clock errors, and 𝑇(𝑡) is the tropospheric delay. The parameter 𝐼(𝑡) 

denotes the ionospheric delay for code observations and advance in phase observations 

expressed in units of distance with respect to the first frequency. For frequency 𝑓𝑗 , the 

ionospheric coefficient 𝜇𝑗 = 𝑓1
2/𝑓𝑗

2 is used to express its ionosphere in terms of 𝐼(𝑡). The 

parameters 𝑏𝑝𝑗
(𝑡) and 𝑏𝜙𝑗

(𝑡) are the code and phase biases (including the phase ambiguity) 

at epoch (t), respectively. A geometry-free approach is used where positioning is of no interest 

at this stage. Thus, the satellite orbit error is not present in the model as knowledge of the 

accurate 3D satellite position is not needed. The ionospheric delay 𝐼(𝑡) can be decomposed 

into two components; its initial value 𝐼(𝑡𝑜) and the difference from this value, which is 

denoted as (𝛿𝐼), such that: 

 

𝐼(𝑡) = 𝐼(𝑡𝑜) + 𝛿𝐼(𝑡)  (2) 
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where 𝑡𝑜 refers to the initial epoch of data processing.  

  

The model given in Eq. (1) shows that the problem at hand is under-determined. The 

rank-defect is caused by the fact that the information content of the observables is such that 

only time-differences of the parameters can be determined. The rank deficiency in the model 

solution is reduced by re-parameterisation of the unknowns in the observation equations as 

follows (El-Mowafy et al. 2010): 

  

𝜌∗(𝑡) = 𝜌(𝑡) + 𝑐(𝛿𝑡𝑟(𝑡) − 𝛿𝑡𝑠(𝑡)) + 𝑇(𝑡) (3) 

𝜌∗∗(𝑡) = 𝜌∗(𝑡) − 𝜌∗(𝑡𝑜) (4) 

𝑏𝜙𝑗=1 𝑡𝑜 𝑛

∗ (𝑡) = 𝑏𝜙𝑗=1 𝑡𝑜 𝑛
(𝑡) + [𝜌∗(𝑡𝑜) − 𝜇𝑗=1 𝑡𝑜 𝑛 𝐼(𝑡𝑜)] (5) 

𝑏𝑝𝑗=1 𝑡𝑜 𝑛

∗ (𝑡) = 𝑏𝑝𝑗=1 𝑡𝑜 𝑛
(𝑡) + [𝜌∗(𝑡𝑜) + 𝜇𝑗=1 𝑡𝑜 𝑛 𝐼(𝑡𝑜)] (6) 

   

The observation equations in terms of the re-parameterized vector of unknowns (𝜌∗∗(𝑡), 

𝛿𝐼(𝑡), 𝑏𝜙𝑗=1 𝑡𝑜 𝑛

∗ (𝑡), 𝑏𝑝𝑗=1 𝑡𝑜 𝑛

∗ (𝑡))𝑇 at time (𝑡) then read: 

 

𝜙𝑗=1 𝑡𝑜 𝑛(𝑡) = 𝜌∗∗(𝑡) − 𝜇𝑗=1 𝑡𝑜 𝑛 𝛿𝐼(𝑡) + 𝑏𝜙𝑗=1 𝑡𝑜 𝑛

∗ (𝑡) + 휀𝜙𝑗=1 𝑡𝑜 𝑛
(𝑡)

𝑝𝑗=1 𝑡𝑜 𝑛(𝑡) = 𝜌∗∗(𝑡) + 𝜇𝑗=1 𝑡𝑜 𝑛 𝛿𝐼(𝑡) + 𝑏𝑝𝑗=1 𝑡𝑜 𝑛

∗ (𝑡) + 휀𝑝𝑗=1 𝑡𝑜 𝑛
(𝑡)  (7) 

During initialization when processing, the first two terms on the right-hand side of the equation 

equal zeros at the first epoch (𝑡𝑜), leading to 𝑏𝜙𝑗

∗ (𝑡𝑜) and 𝑏𝑝𝑗

∗ (𝑡𝑜) equal 𝜙𝑗(𝑡𝑜) and 𝑝𝑗(𝑡𝑜), 

for frequency j, respectively. The rank deficiency is completely removed by predicting the 

unknowns in Eq. (7), as will be discussed in the next section, and treating the predicted 

unknowns as pseudo observations. At time 𝑡  for the unknown vector [𝜌∗∗(𝑡) , 𝛿𝐼(𝑡) , 

𝑏𝜙𝑗=1 𝑡𝑜 𝑛

∗ (𝑡), 𝑏𝑝𝑗=1 𝑡𝑜 𝑛

∗ (𝑡)]𝑇 denoted in a general form as 𝑥𝑡 we have: 

 

�̃�𝑡 = Φ𝑡/𝑡−1�̂�𝑡−1  (8) 

 

where Φ𝑡/𝑡−1 is the transition matrix, �̂�𝑡−1 and �̃�𝑡 are the estimated and predicted vectors of 

unknowns at times t-1 and t. The reparametrized unknown range (𝜌∗∗) is in general hard to 

predict unless the satellite and receiver motion and dynamics are taken into consideration. One 

way to avoid the complexity of this scenario is to model (𝜌∗∗) using a random walk process. 

However, this process requires good stochastic information and one has also to consider the 

fact that a random walk process noise increases with time. Alternatively, the reparametrized 

unknown range (𝜌∗∗) can be considered unlinked in time and thus excluded from the prediction 

process, such that the predicted vector of unknowns reads: 

 

�̂�𝑡 = 𝑀  �̃�𝑡   (9) 

 

where M is a diagonal identity matrix except that the first element equals zero, such that M = 

𝑑𝑖𝑎𝑔[0, 1, I2𝑛×2𝑛  ]  (Teunissen, personal communication) and �̂�𝑡  = [𝛿𝐼(𝑡) , 𝑏𝜙𝑗=1 𝑡𝑜 𝑛

∗ (𝑡) , 

𝑏𝜙𝑗=1 𝑡𝑜 𝑛

∗ (𝑡)]𝑇. Processing can be performed using Kalman filtering, however, this needs some 

manpulation of its formulation to account for the use of �̂�𝑡 instead of �̃�𝑡. Equivalently, one 

can use a parametric least-squares adjustment, processing epoch by epoch, and augmenting the 

observation model by using the predicted unknowns as pseudo observations, such that: 
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[
𝑦𝑡

�̂�𝑡
] = [

𝐴𝑡
′

𝑀
] 𝑥𝑡 + 휀𝑡  (10) 

 

with 𝐴𝑡
′ = [

𝑢 −𝜇𝑗=1 𝑡𝑜 𝑛

𝑢 +𝜇𝑗=1 𝑡𝑜 𝑛

I 0
0 I

], where 𝑦𝑡 is the vector of observations, which comprises 

code and phase observations, u is a column vector of ones with a size n, 𝜇𝑗=1 𝑡𝑜 𝑛 is a column 

vector of size n, I is the identity matrix of size n, and 휀𝑡  denotes a zero-mean vector of 

observation noise. The estimated values of the unknowns (�̂�𝑡) can then be determined as 

follows:  

 

�̂�𝑡 = [𝐴𝑡
′𝑇𝑄𝑦𝑡

−1𝐴𝑡
′ + 𝑀𝑡

𝑇𝑄�̂�𝑡/𝑡−1

−1 𝑀𝑡]−1[𝐴𝑡
′𝑇𝑄𝑦𝑡

−1𝑦𝑡 + 𝑀𝑡
𝑇𝑄�̂�𝑡/𝑡−1

−1 �̂�𝑡/𝑡−1]   (11) 

 

Dynamic and Stochastic Modelling 

 

In Eq. (7), the ionospheric delay 𝛿𝐼  and the bias components  𝑏𝜙𝑗

∗  and 𝑏𝑝𝑗

∗ are assumed 

changing relatively smoothly with time for a short period (El-Mowafy 2009), which can be 

assumed between 15 and 30 minutes, depending on site and observing conditions. The 

temporal correlations of the three biases, denoted in a general term as 𝛽 , are assumed 

exponentially decaying with time by using a first-order autoregressive stochastic process, such 

that: 

 

𝛽 = 𝑒−|Δ𝑡|/𝜏  (12) 

 

where Δ𝑡 is the time interval between the epochs (𝑡 − 1) and (𝑡) and 𝜏 is the correlation time 

length. The dynamic models of 𝛿𝐼, 𝑏𝜙𝑗

∗  and 𝑏𝑝𝑗

∗  for a frequency 𝑗 at 𝑡 then read: 

 

𝛿𝐼(𝑡) = 𝛽𝛿𝐼 𝛿𝐼(𝑡 − 1) + 𝑑𝛿𝐼(𝑡) (13) 

𝑏𝜙𝑗

∗ (𝑡) = 𝛽 𝑏𝜙𝑗
∗  𝑏𝜙𝑗

∗ (𝑡 − 1) + 𝑑 𝑏𝜙𝑗
∗ (𝑡) (14) 

𝑏𝑝𝑗

∗ (𝑡) = 𝛽 𝑏𝑝𝑗
∗  𝑏𝑝𝑗

∗ (𝑡 − 1) + 𝑑 𝑏𝑝𝑗
∗ (𝑡) (15) 

  

where 𝛽𝛿𝐼 , 𝛽 𝑏𝜙𝑗
∗  and 𝛽 𝑏𝑝𝑗

∗  are the temporal correlations for 𝛿𝐼(𝑡) , 𝑏𝜙𝑗

∗ (𝑡)  and 𝑏𝑝𝑗

∗ (𝑡) . 

𝑑𝛿𝐼(𝑡), 𝑑𝑏𝜙𝑗
∗ (𝑡) and 𝑑𝑏𝑝𝑗

∗ (𝑡) are their process noises, which are assumed Gaussian white 

noises. The transition matrix in Eq. (8) then reads: 

 

𝛷𝑡/𝑡−1 = 𝑑𝑖𝑎𝑔[𝛽𝛿𝐼 , 𝛽𝑏𝜙𝑗=1..𝑛
∗ ,  𝛽𝑏𝑝𝑗=1..𝑛

∗ ] (16) 

 

Where 𝛽𝑏𝜙𝑗=1..𝑛
∗ and  𝛽𝑏𝑝𝑗=1..𝑛

∗  are diagonal matrices including the values of 𝛽 𝑏𝜙𝑗
∗ and 𝛽 𝑏𝑝𝑗

∗  for 

each frequency, where j=1 to n. The variance of each process noise is [
𝜗

2/𝜏
(1 − 𝛽2)](Gelb et al. 

1974), where 𝜗 denotes its spectral density. No auto-correlation nor cross-correlation among 

code and phase measurements are assumed in the used stochastic model.  
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Validation of the Observations Using the Single-Receiver Single-Satellite Model 

 

For detection of outliers in the observations, one may consider examining the model using 

observations only from the current epoch (t). This is referred to as Local Testing. In local 

validation of GNSS observations, one may wish to test 𝑞 number of possible errors in the 

observations, where 𝑞 < df, where df is the degrees of freedom of the model. For 𝑢 number of 

unknowns, and excluding the unknown 𝜌∗∗  during the prediction process, the number of 

predicted unknowns is 𝑢 − 1 . Thus, the degrees of freedom for n number of observed 

frequencies are [2𝑛 + (𝑢 − 1)] − 𝑢] = 2𝑛 − 1. The best estimator of the error vector (∇̂𝑡) can 

be determined from (Teunissen 2006): 

 

∇̂𝑡= (𝐶𝑡
𝑇𝑄𝑦𝑡

−1𝑄�̂�𝑡
𝑄𝑦𝑡

−1𝐶𝑡)−1𝐶𝑡
𝑇𝑄𝑦𝑡

−1�̂�𝑡  (17) 

  

and its covariance matrix is: 

 

𝑄∇̂𝑡
= (𝐶𝑡

𝑇𝑄𝑦𝑡
−1𝑄�̂�𝑡

𝑄𝑦𝑡
−1𝐶𝑡)−1  (18) 

   

where �̂�𝑡 and 𝑄�̂�𝑡
 are the computed observation residuals and their covariance matrix from 

the least squares solution, where: 

 

�̂�𝑡 = 𝑌𝑡 − 𝐴𝑡  �̂�𝑡 =  [
𝑦𝑡

�̂�𝑡
] − [

𝐴𝑡
′

𝑀
] �̂�𝑡  (19) 

 

and 𝑄�̂�𝑡
= 𝑄𝑌𝑡

− [𝐴𝑡(𝐴𝑡
𝑇𝑄𝑌𝑡

−1𝐴𝑡)−1𝐴𝑡
𝑇] , with 𝐴𝑡 = [

𝐴𝑡
′

𝑀
],  and 𝑄𝑌𝑡

= [
𝑄𝑦𝑡

0

0 𝑄�̂�𝑡

]  is the 

covariance matrix of the observations and predicted unknowns. 𝐶𝑡 is the matrix describing 

which observations are examined, such that each column of 𝐶𝑡 describes one possible error. 

The elements of each column are set to zeros except the element corresponding to the examined 

observation, which equals 1.  

 

 Possible detection of the presence of model errors in local testing can be performed by 

examining the Local Over-all Model (LOM) statistic 𝑇𝐿𝑂𝑀 , which can be formulated as 

(Teunissen 2006): 

 

𝑇𝐿𝑂𝑀 = ∇̂𝑡
𝑇𝑄∇̂𝑡

−1∇̂𝑡  (20) 

  

and measurement or model errors are suspected when: 

 

𝑇𝐿𝑂𝑀 ≥ 𝜒𝛼
2(𝑑𝑓, 0)  (21) 

  

where 𝜒𝛼
2 is the Chi-squared value for a significance level 𝛼.  

 

Once the presence of model errors is detected, one needs to identify the erroneous 

measurement(s) that cause such model errors. The matrix 𝐶𝑡 is set to test all possibilities of the 

presence of errors in the observations. For local testing, two cases are of particular interest:  

 1- The case of a single outlier in one code or phase observation, i.e. 𝑞 = 1. In this case, the 𝐶𝑡 

matrix reduces to a column vector 𝑐𝑡 , ∇̂𝑡  becomes a scalar, and the test statistic can be 

computed as follows (Baarda 1968):  
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𝑤𝑡 =
∇̂𝑡

𝜎∇̂𝑡

  (22) 

 

where 𝜎∇̂𝑡
 is the standard deviation of ∇̂𝑡. The null hypothesis, denoted as 𝐻𝑜, is set to present 

the case that no outliers are present in the data. 𝐻𝑜 is rejected if  

 

|𝑤𝑡| ≥ 𝑁𝛼

2
(0,1)  (23) 

 

2- The case of multiple outliers, or complete loss of lock either in phase or in code 

observations, i.e. when 1 < 𝑞 ≤ 𝑑𝑓. In this case, 𝐶𝑡 is a matrix with a number of columns 

equals 𝑞. 

 

For the cases mentioned above, where different alternative hypotheses are examined, we 

have mixed size cases (i.e. 𝑞 = 1 for a single outlier and 𝑞 > 1 for the case of multiple 

outliers). Therefore, a unified criterion needs to be set to compare the statistical testing 

outcomes of different alternative hypotheses in order to identify possible observations that may 

contain the errors. This can be performed by comparing the P-values under the 𝜒2 distribution 

for different alternative hypotheses (where P-value is the probability of obtaining a test statistic 

at least as extreme as the observed one). All alternative hypotheses are ranked in a descending 

order according to their P-values, where the alternative hypothesis that has the smallest P-value 

is considered as the most likely alternative hypothesis. For the case of 𝑞=1, the P-value of 𝑤𝑡
2 

is computed as it has a 𝜒2 distribution. 

 

In identification testing, one has to consider the correlations among observation errors as 

this may introduce type III errors (identification of the wrong observations that do not include 

the outliers and missing the faulty ones if they have significant correlation). For observations i 

and j, and ignoring the time index, the correlation coefficient between their corresponding 

errors denoted as 𝜉∇̂𝑖,∇̂𝑗
 reads:  

 

𝜉∇̂𝑖,∇̂𝑗
=

𝑐𝑖
𝑇𝑄𝑌

−1𝑄�̂�𝑄𝑌
−1𝑐𝑗

√𝑐𝑖
𝑇𝑄𝑌

−1𝑄�̂�𝑄𝑌
−1𝑐𝑖√𝑐𝑗

𝑇𝑄𝑌
−1𝑄�̂�𝑄𝑌

−1𝑐𝑗

  (24) 

 

where 𝑐𝑖  and 𝑐𝑗  are zero column vectors except for the elements corresponding to the 

observations 𝑖 and 𝑗 which equal 1. If single frequency observations are used in the given 

model, the correlation between phase and code observation errors is almost -1, and 

identification is not possible. For multi-frequency data, the correlation between phase errors is 

nearly -1 whereas that between code observation errors is almost zero. This means that phase 

errors will be hard to identify due to their high correlation whereas error identification will be 

possible for code errors since there is no correlation between them. In this study, we will 

restrict attention to detection and identification of outliers in code observations in the local 

testing case and detection of cycle slips in phase observations. To detect cycle slips, more than 

one epoch of data have to be examined. This is referred to as Global testing, where the Global 

Over-all Model (LOM) statistic TGOM reads: 

 

𝑇𝐺𝑂𝑀 = ∑ ∇̂𝑖
𝑇𝑄∇̂𝑖

−1∇̂𝑖
𝑡
𝑖=𝑡−δ𝑡   (25) 

 

where t denotes to the time interval considered in computation of TGOM (e.g. two or three 
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epochs). The TGOM statistic has also a Chi-squared distribution under 𝐻𝑜 and cycle slips are 

suspected in phase observations if this statistic exceeds a critical value of Chi-squared using the 

chosen significance level and degrees of freedom that are computed from the accumulated 

observations. Once a cycle slip is detected, the validation procedure is re-initialized.   

 

Testing the Single-Receiver Single-satellite Validation of GNSS Measurements 

 

The previous sections summarize the single-receiver single-satellite approach for vaildation 

of GNSS data. This approach has the following advantages:  

 No satellite positions need to be known beforehand and thus no complete navigation 

messages need to be read and used. In this case, observation weighting can be performed 

using, for instance, the signal-to-noise ratio. 

 Measurements from systems with a limited number of operational satellites, such as Galileo 

and QZSS, can be screened without the need for having a complete positioning solution. 

 There is no need for the determination of inter-system biases when using data from different 

constellations.  

 

In addition, the approach has the following capabilities: 

 It can detect multi-faults at any one epoch for each satellite.  

 Fault detection can be performed for a single or multi-frequency observations.  

 Due to the method flexibility, it can be applied to any receiver type and make, and under static 

or kinematic modes. 

 

In this section, practical testing of the proposed method is carried out. Description of the test 

data and assumptions are first given. Next, evaluation of the performance of the method is 

discussed, first for detection and identification of outliers in code observations in a local 

testing, and next for detection of cycle slips in phase observations. 

 

Test Description 

 

The single-receiver single-satellite method is tested using data that span three days as a 

representative sample. The observations were collected in a static mode at a continuously 

operating reference station (CORS) at Curtin University, Western Australia, during the period 

15/3/2012 to 17/3/2012 with 30 seconds sampling interval. Observations from GPS, 

GLONASS and Galileo were collected using a geodetic-grade multi-frequency multi-GNSS 

antenna (TRM59800.00) and receiver (Septentrio POLARX4). Tracked signals in the test 

included L1, L2 and L5 code and phase observations for GPS, L1 and L2 for GLONASS, and 

E1, E5a and E5b for Galileo. Over each day, 32 GPS satellites, 24 GLONASS satellites, and 4 

Galileo satellites (including GIOVE A and B, and IOV PRN 11 and 12) were observed.  

 

An indication on the correctness of the model and assumed observation stochastic 

information used can be obtained by examining whether the estimated w-test statistic of the 

observed signals has a standard normal distribution as an incorrect model or inappropriate 

stochastic assumptions would lead to a wrong distribution. This can be performed by 

inspection of the probability plots of the w-test statistic. In this plot, the data are ordered and 

plotted against the correspondeing percentage points from a standard normal distribution in 

such a way that the points should form an approximate straight line. Departures from this 

straight line indicate departures from normality. An example of tested normal probability plots 

is given in Figure 1 for p1 code observations of GLONASS satellite PRN 18 collected on 
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15/3/2012. In our tests, the observations were weighted using an elevation-angle dependent 

model in the form [1 + 10 × 𝑒(−𝐸𝑜/10𝑜)] (Euler and Goad 1991, Teunissen and de Bakker 

2012), where  𝐸𝑜  is the observed elevation angle. The standard deviations used for the 

undifferenced observations were selected according to the observation type (phase/code), 

frequency and constellation and to satisfy the condition that the w-test statistic of each 

observed signal has a standard normal distribution. These standard deviations along zenith 

direction agreed in general with the values given in the litrature. For 𝛿𝐼, 𝑏𝜙𝑗

∗  and 𝑏𝑝𝑗

∗ , the used 

spectral densities were 3 𝑚𝑚2/𝑠, 2 𝑚𝑚2/𝑠 and 50 𝑚𝑚2/𝑠, with correlation times 1500 s, 

300 s and 300 s, respectively. 

 

 

Figure 1.  Normal Probability plot of w-test statistic for 𝑝1 observations of GLONASS  

 

Evaluation of the Method Performance in Detetction and Identification of Outliers in Code 

Observations 
 

To evaluate the performance of the proposed algorithm, the following approach was carried 

out. First, several artificial errors were inserted at known epochs in the test data. Next, the 

proposed single-receiver single-satellite validation approach was performed. A check was 

carried out to examine whether the algorithm was able to detect the presence of the inserted 

errors at their known epochs. The inserted errors in code observations ranged between 0.6 m 

and 5 m. These ranges were selected such that the minimum values equal the MDB, which is 

the minimum error that can be detected for each observation type with the chosen probabilities 

of false alaram and miss-detection, taken as 0.001 and 0.2 respectively. The MDBs are 

computed from the covariance matrix of the observations (see Teunissen 1998). The artificial 

errors were created using the MATLAB function "rand" such that they have random values that 

were bounded between 0.6 m and 5 m. The inserted errors had almost a standard uniform 

distribution. Extra errors were added close to the lower bound to further test the method at this 

critical value. An example of the distribution of the inserted errors in p1 code errors for 

GLONASS satellites on 15/3/2012 is given in Figure 2. 

 

In total, 5599 artificial errors were inserted in the code data. Table 1 gives the number of 

errors inserted in each system for each of the three test days followed by the percentage of 

successful detection of the inserted errors referenced to their known information. The errors 

were inserted for all observed 32 GPS satellites, 24 GLONASS satellites, and 4 Galileo 

satellites throughout the 24 hours of data for each of the test days and for all available 

frequencies. In general, the number of inserted errors were proportional to the number of 
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satellites observed in each system. The specific epochs and observations where these errors 

were inserted as well as their values were recorded. The results of Tables 1 are a function of the 

test significance level (). Using a significance level for w-test statistics equals 0.001, the 

significance level for the local over-all-model in the detetction test was computed using 

Baarda’s B method (Baarda 1968), which assumes same probability for type II error (failure to 

reject a false null hypothesis) in both the detection and identification tests. In this study, this 

probability is taken equals 0.2. The corresponding  for dual frequency observations was 

computed as 0.0052, which is the case for GLONASS satellites and most GPS satellites. For 

triple-frequency observations, i.e. for Galileo satellites and GPS PRN 1 and 25,  was 

computed as 0.0123.  

 

 
Fig. 2  Distribution of inserted errors for GLONASS p1 code measurements 

 

 
Table 1  Percentage of epochs with detected code observation outliers (for all frequencies) 

System GPS GLONASS Galileo 

(m) #err. 0.6-2 2-3.5 3.5-5 #err. 0.6-2 2-3.5 3.5-5 #err. 0.6-2 2-3.5 3.5-5 

15/3/12 922 75.6 92.5 98.7 795 72.3 83.9 92.5 148 94.3 98.8 98.9 

16/3/12 895 76.3 93.1 95.4 798 76.0 86.2 93.5 158 91.7 95.2 100.0 

17/3/12 920 80.2 92.3 95.7 810 78.0 90.5 95.2 153 97.0 100.0 100.0 

   

The success of detection summarized in Table 1 was separately given for errors within three 

bands (0.6 m to 2 m, 2 m to 3.5 m, and the last 3.5 m to 5 m). Detection results showed that the 

algorithm success rate increases as the error size increases and it was best for Galileo, followed 

by GPS and last GLONASS. For GPS, over the three test days, the successful detection of code 

outliers were on average 77.4%, 92.63%, and 96.6% for the error ranges 0.6 m - 2 m, 2 m - 3.5 

m, and 3.5 m - 5 m, respectively. The detection of code outliers for GLONASS were less than 

those of GPS. These percentages were significantly better with Galileo measurements, which 

on average were 94.3%, 98.0% and 99.63%. This can be attributed to the better signal quality 

of GPS compared with GLONASS, and the enhanced quality of Galileo measurements as well 

as the more number of observations it has, which helps in strengthen application of the model. 

 

For the epochs where detection was successful, a check was performed to examine whether 

the observations of the artificial errors can be correctly identified. Table 2 shows the overall 

percentage for identification of errors for the the same data and testing period that was 

discussed in the analysis of results of error detection. Successful error identification was 

assessed for each of the three error bands 0.6 m - 2 m, 2 m - 3.5 m, and 3.5 m - 5 m. Results 
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showed that the success rates of identifying outliers for the three error bands (for the epochs 

where errors were detected) were close and increased as error size increased. For GPS and 

Galileo the method was successful in identifying code outliers ranged from approximately 90% 

up to 99.5%. The identifiication of outliers were almost 4% to 10% less for GLONASS. The 

variability of the success rate can be attributed to different observation precisions. 
 Table 2  Percentage of identification of code outliers (for all frequencies) 

System GPS GLONASS Galileo 

(m) 0.6-2 2-3.5 3.5-5 0.6-2 2-3.5 3.5-5 0.6-2 2-3.5 3.5-5 

15/3/12 88.8 93.2 96.4 83.2 84.3 89.6 98.7 99.1 99.5 

16/3/12 89.5 93.8 97.3 85.1 86.1 88.4 94.0 95.1 99.2 

17/3/12 90.0 93.4 97.0 86.5 87.0 90.8 97.8 98.8 99.5 

 

The advantage of the method is demonstrated in another test by applying it in a single point 

positioning (SPP) mode using measurements only from the current Galileo constellation, 

which includes four IOV satellites, PRN 11, 12, 19 and 20. The used data spaned 

approximately three hours on 2/7/2013 (between 1:30 and 4:26 where the four satellites were 

simultaneously visible), collected at a CORS in Curtin University in a static mode with a 

sampling interval of 30 sec using a Trimble Net R9 receiver. The data were screened 

epoch-by-epoch for detection and identification of code outliers. Such capability is not possible 

by current statistical validation methods, as they require redundancy of satellite measurements, 

which was not available in this test as only four satellites were used. However, with the 

single-receiver single-satellite method, data validation was possible owing to the fact that each 

satellite data were screened independently. A similar possible scenario can be experienced 

when working with other constellations in what is called “urban canyon”. During the SPP 

processing of Galileo measurements only one code outlier was detected and removed. The 

coordinate differences along the East, North and Up directions between the epoch-by-epoch 

SPP least squares solution and the known station coordinates were computed and found to be 

bounded within ±5m, indicating that no outliers were left in the data. Figures 3 and 4 show two 

examples of the time series of the ionosphere-free combination 𝑚𝑝𝑖
= 𝑝𝑖 − 𝜙𝑖 + 2𝜆𝑖

2 𝜙𝑗−𝜙𝑖

𝜆𝑗
2−𝜆𝑖

2 

(which mainly gives multipath and code noise) for the Galileo satellites 11 and 12, where i 

refers to the frequency E1 and j referes to E5a frequency. As the figures show, no undetected 

outliers can be seen.  

     

Fig. 3 iono-free combination for PRN 11    Fig. 4  iono-free combination for PRN 12 
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Evaluation of the Method Performance in Detection of Cycle Slips 

 

To evaluate the detection of cycle slips, a similar approach was carried out where 970 artificial 

cycle slips were inserted in the phase data of the three systems GPS, GLONASS and Galileo. 

The cycle slips were insterted for all available frequencies throughout the 24 hours of data for 

the three test days as given in Table 3. Global testing was performed to examine whether the 

algorithm was able to detect the presence of the inserted cycle slips. The inserted slips were 

random but ranged from one cycle to 6 cycles with almost a standard uniform distribution. 

Table 3 summarizes the numbers of inserted cycl slips and the percentage of their successful 

detection within two bands (1-3 cycles and 4-6 cycles). The table shows consistency in 

detection of cycle slips and that successful detection for GPS was on average approximately 

95% and 98% respevctively for the two test bands. For Galileo, the latter had improved to 

100%. For GLONASS, the success rates were slightly less than GPS and Galileo for the 

reasons discussed earlier.  

 
Table 3  Percentage of epochs with detected phase observation cycle slips (for all frequencies) 

System GPS GLONASS Galileo 

cycles #slips 1-3 4-6 #slips 1-3 4-6 #slips 1-3 4-6 

15/3/12 144 95.8 98.6 142 92.9 95.8 40 95.0 100 

16/3/12 142 94.4 98.6 138 91.3 95.7 39 94.7 100 

17/3/12 144 94.4 97.2 141 91.5 95.8 40 95.0 100 

 

Another test for evaluation of the performance of the method in cycle slips detetction was 

executed by processing GPS data of 15/3/12 which contain the above slips using Bernese 

GNSS software version 5 in a percise point positioning (PPP) mode (see Dach et al. 2007 for 

the methods used in Bernese for detection of cycle slips). The number of cycle slips reported by 

Bernese software were compared with the inserted slips and with the slips detected by the 

single-receiver single-satellite method. Out of the 144 cycle slips in the data, Bernse software 

flaged 141 slips. Comparing this with the results of the proposed method, which had detected 

140 cycle slips, shows that the perofrmance of the single-receiver single-satellite validation 

method was comparable to that of Bernse software for the test at hand. 

 

Summary 

 

A method that can be applied for real-time or post-mission quality control of GNSS 

measurements is presented using a single-receiver single-satellite DIA approach. The 

advantages of this approach include: it is applicable to any GNSS with any arbitrary number of 

frequencies, no need for the navigation message, the approach is able to detect faulty 

measurements for systems with a limited number of operational satellites, and there is no need 

for the determination of inter-system biases when using data from different constellations.  

 

The capability of the proposed algorithm was evaluated for detection and identification of 

outliers in code observations and detection of cycle slips in phase observations of GPS, 

GLONASS and Galileo. Artificial errors were inserted in a data set that spans 3 days for all 

frequencies. The method was successful in detecting from 77.4% to 96.6% on average for the 

errors ranging between 0.6 m to 5 m in GPS observations. For GLONASS, the overall 

performance was slightly less than GPS, whereas for Galileo measurements, the average rates 

of successful detection ranged between 94.3% and 99.63%. This can be attributed to 

differences in signal quality and number of observations, which helps in strengthen application 

of the model. Evaluation of the method performance in correct identification of code outliers 
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showed that the method was successful in identifying 89.4% to 96.9% of GPS code outliers and 

with slightly lower performance for for GLONASS. For Galileo, the rates of successful 

identification of outliers were much better with average values between 96.8% and 99.4%. 

Successful detection of artificil cycle slips in phase data was between 95% and 99% for GPS 

and Galileo and was a little less for GLONASS. 

 

 

The advantage of the method is demonstrated in another test by using it in a single point 

positioning where measurements from only four IOV Galileo satellites were processed. Unlike 

other statistical testing methods, satellite redundancy was not needed as data of each satellite 

were screened independently. In another test, comparison between the number of cycle slip 

detected using the proposed method with that of Bernese software during PPP processing 

shows that they have a comparable performance. 
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