1,998 research outputs found

    TARGET: A Digitizing And Trigger ASIC For The Cherenkov Telescope Array

    Full text link
    The future ground-based gamma-ray observatory Cherenkov Telescope Array (CTA) will feature multiple types of imaging atmospheric Cherenkov telescopes, each with thousands of pixels. To be affordable, camera concepts for these telescopes have to feature low cost per channel and at the same time meet the requirements for CTA in order to achieve the desired scientific goals. We present the concept of the TeV Array Readout Electronics with GSa/s sampling and Event Trigger (TARGET) Application Specific Circuit (ASIC), envisaged to be used in the cameras of various CTA telescopes, e.g. the Gamma-ray Cherenkov Telescope (GCT), a proposed 2-Mirror Small-Sized Telescope, and the Schwarzschild-Couder Telescope (SCT), a proposed Medium-Sized Telescope. In the latest version of this readout concept the sampling and trigger parts are split into dedicated ASICs, TARGET C and T5TEA, both providing 16 parallel input channels. TARGET C features a tunable sampling rate (usually 1 GSa/s), a 16k sample deep buffer for each channel and on-demand digitization and transmission of waveforms with typical spans of ~100 ns. The trigger ASIC, T5TEA, provides 4 low voltage differential signal (LVDS) trigger outputs and can generate a pedestal voltage independently for each channel. Trigger signals are generated by T5TEA based on the analog sum of the input in four independent groups of four adjacent channels and compared to a threshold set by the user. Thus, T5TEA generates four LVDS trigger outputs, as well as 16 pedestal voltages fed to TARGET C independently for each channel. We show preliminary results of the characterization and testing of TARGET C and T5TEA.Comment: 6 pages, 8 figures, Proceedings of the 6th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2016

    Suppression of geometrical barrier in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} crystals by Josephson vortex stacks

    Full text link
    Differential magneto-optics are used to study the effect of dc in-plane magnetic field on hysteretic behavior due to geometrical barriers in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} crystals. In absence of in-plane field a vortex dome is visualized in the sample center surrounded by barrier-dominated flux-free regions. With in-plane field, stacks of Josephson vortices form vortex chains which are surprisingly found to protrude out of the dome into the vortex-free regions. The chains are imaged to extend up to the sample edges, thus providing easy channels for vortex entry and for drain of the dome through geometrical barrier, suppressing the magnetic hysteresis. Reduction of the vortex energy due to crossing with Josephson vortices is evaluated to be about two orders of magnitude too small to account for the formation of the protruding chains. We present a model and numerical calculations that qualitatively describe the observed phenomena by taking into account the demagnetization effects in which flux expulsion from the pristine regions results in vortex focusing and in the chain protrusion. Comparative measurements on a sample with narrow etched grooves provide further support to the proposed model.Comment: 12 figures (low res.) Higher resolution figures are available at the Phys Rev B version. Typos correcte

    Infrared/optical - X-ray simultaneous observations of X-ray flares in GRB 071112C and GRB 080506

    Get PDF
    We investigate the origin of short X-ray flares which are occasionally observed in early stages of afterglows of gamma-ray bursts (GRBs). We observed two events, GRB 071112C and GRB 080506, before the start of X-ray flares in the optical and near-infrared (NIR) bands with the 1.5-m Kanata telescope. In conjunction with published X-ray and optical data, we analyzed densely sampled light curves of the early afterglows and spectral energy distributions (SEDs) in the NIR-X-ray ranges. We found that the SEDs had a break between the optical and X-ray bands in the normal decay phases of both GRBs regardless of the model for the correction of the interstellar extinction in host galaxies of GRBs. In the X-ray flares, X-ray flux increased by 3 and 15 times in the case of GRB 071112C and 080506, respectively, and the X-ray spectra became harder than those in the normal decay phases. No significant variation in the optical-NIR range was detected together with the X-ray flares. These results suggest that the X-ray flares were associated with either late internal shocks or external shocks from two-component jets.Comment: 10 pages, 5 figures, accepted to Astronomy and Astrophysic

    OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. VI. FURTHER OBSERVATIONS FROM TNG, WHT, OAN, SOAR, AND MAGELLAN TELESCOPES

    Get PDF
    Indexación: Web of ScienceBlazars, one of the most extreme classes of active galaxies, constitute so far the largest known population of.-ray sources, and their number is continuously growing in the Fermi catalogs. However, in the latest release of the Fermi catalog there is still a large fraction of sources that are classified as blazar candidates of uncertain type (BCUs) for which optical spectroscopic observations are necessary to confirm their nature and their associations. In addition, about one-third of the gamma-ray point sources listed in the Third Fermi-LAT Source Catalog (3FGL) are still unassociated and lacking an assigned lower-energy counterpart. Since 2012 we have been carrying out an optical spectroscopic campaign to observe blazar candidates to confirm their nature. In this paper, the sixth of the series, we present optical spectroscopic observations for 30 gamma-ray blazar candidates from different observing programs we carried out with the Telescopio Nazionale Galileo, William Herschel Telescope, Observatorio Astronomico Nacional, Southern Astrophysical Research Telescope, and Magellan. Telescopes. We found that 21 out of 30 sources investigated are BL Lac objects, while the remaining targets are classified as flat-spectrum radio quasars showing the typical broad emission lines of normal quasi-stellar objects. We conclude that our selection of gamma-ray blazar. candidates based on their multifrequency properties continues to be a successful way to discover potential low-energy counterparts of the Fermi. unidentified gamma-ray sources and to confirm the nature of BCUs.http://iopscience.iop.org/article/10.3847/0004-6256/151/4/95/met

    Coupled-Cluster Approach to Electron Correlations in the Two-Dimensional Hubbard Model

    Full text link
    We have studied electron correlations in the doped two-dimensional (2D) Hubbard model by using the coupled-cluster method (CCM) to investigate whether or not the method can be applied to correct the independent particle approximations actually used in ab-initio band calculations. The double excitation version of the CCM, implemented using the approximate coupled pair (ACP) method, account for most of the correlation energies of the 2D Hubbard model in the weak (U/t1U/t \simeq 1) and the intermediate U/tU/t regions (U/t4U/t \simeq 4). The error is always less than 1% there. The ACP approximation gets less accurate for large U/tU/t (U/t8U/t \simeq 8) and/or near half-filling. Further incorporation of electron correlation effects is necessary in this region. The accuracy does not depend on the system size and the gap between the lowest unoccupied level and the highest occupied level due to the finite size effect. Hence, the CCM may be favorably applied to ab-initio band calculations on metals as well as semiconductors and insulators.Comment: RevTeX3.0, 4 pages, 4 figure

    π\piNN coupling and two-pion photoproduction on the nucleon

    Full text link
    Effects of non-resonant photoproductions arising from two different πNN\pi NN couplings are investigated in the γNππN\gamma N\to\pi\pi N reaction. We find that the pseudoscalar (PS) πNN\pi NN coupling is generally preferable to the pseudovector (PV) πNN\pi NN coupling and particularly the total cross sections are successfully described by the model with the PS πNN\pi NN coupling. In order to see the difference between the two couplings, we also show the results of invariant mass spectra and helicity-dependent cross sections in various isospin channels calculated with the PS and PV couplings.Comment: 35 pages, 11 figures, minor changes and version to be published in Phys.Rev.

    Discovery of Extended X-Ray emission from the unidentified TeV source HESS J1614-518 using the Suzaku Satellite

    Full text link
    We report the Suzaku results of HESS J1614-518, which is the brightest extended TeV gamma-ray source discovered in the Galactic plane survey conducted using the H.E.S.S. telescope. We discovered three X-ray objects in the field of view of the X-ray Imaging Spectrometer (XIS), which were designated as Suzaku J1614-5141 (src A), Suzaku J1614-5152 (src B), and Suzaku J1614-5148 (src C). Src A is an extended source located at the peak position of HESS J1614-518, and therefore it is a plausible counterpart to HESS J1614-518. The X-ray flux in the 2-10 keV band is 5e-13 erg/s/cm^2, which is an order of magnitude smaller than the TeV flux. The photon index is 1.7, which is smaller than the canonical value of synchrotron emissions from high-energy electrons found in some supernova remnants. These findings present a challenge to models in which the origin of the TeV emission is the inverse Compton scattering of the cosmic microwave background by accelerated electrons that emit X-rays via synchrotron emission. Src B is located at a relatively dim region in the TeV band image; however, its hydrogen column density is the same as that of src A. Therefore, src B may also be physically related to HESS J1614-518. Src C is a foreground late-type B star. We also discovered a soft extended X-ray emission near HESS J1614-518.Comment: Accepted for publication in PASJ vol. 60 Suzaku Special Issue

    CANGAROO-III observation of TeV gamma rays from the unidentified gamma-ray source HESS J1614-518

    Get PDF
    We report the detection, with the CANGAROO-III imaging atmospheric Cherenkov telescope array, of a very high energy gamma-ray signal from the unidentified gamma-ray source HESS J1614-518, which was discovered in the H.E.S.S. Galactic plane survey. Diffuse gamma-ray emission was detected above 760 GeV at the 8.9 sigma level during an effective exposure of 54 hr from 2008 May to August. The spectrum can be represented by a power-law: 8.2+-2.2_{stat}+-2.5_{sys}x10^{-12}x (E/1TeV)^{-Gamma} cm^{-2} s^{-1} TeV^{-1} with a photon index Gamma of 2.4+-0.3_{stat}+-0.2_{sys}, which is compatible with that of the H.E.S.S. observations. By combining our result with multi-wavelength data, we discuss the possible counterparts for HESS J1614-518 and consider radiation mechanisms based on hadronic and leptonic processes for a supernova remnant, stellar winds from massive stars, and a pulsar wind nebula. Although a leptonic origin from a pulsar wind nebula driven by an unknown pulsar remains possible, hadronic-origin emission from an unknown supernova remnant is preferred.Comment: 9 pages, 7 figures, accepted for publication in Ap
    corecore