Differential magneto-optics are used to study the effect of dc in-plane
magnetic field on hysteretic behavior due to geometrical barriers in
Bi2Sr2CaCu2O8+δ crystals. In absence of in-plane field a vortex
dome is visualized in the sample center surrounded by barrier-dominated
flux-free regions. With in-plane field, stacks of Josephson vortices form
vortex chains which are surprisingly found to protrude out of the dome into the
vortex-free regions. The chains are imaged to extend up to the sample edges,
thus providing easy channels for vortex entry and for drain of the dome through
geometrical barrier, suppressing the magnetic hysteresis. Reduction of the
vortex energy due to crossing with Josephson vortices is evaluated to be about
two orders of magnitude too small to account for the formation of the
protruding chains. We present a model and numerical calculations that
qualitatively describe the observed phenomena by taking into account the
demagnetization effects in which flux expulsion from the pristine regions
results in vortex focusing and in the chain protrusion. Comparative
measurements on a sample with narrow etched grooves provide further support to
the proposed model.Comment: 12 figures (low res.) Higher resolution figures are available at the
Phys Rev B version. Typos correcte