199 research outputs found

    Synthesis and Characterization of Greener Ceramic Materials with Lower Thermal Conductivity Using Olive Mill Solid Byproduct

    Get PDF
    In the current research, the valorization of olive mill solid waste as beneficial admixture into clay bodies for developing greener ceramic materials with lower thermal conductivity, thus with increased thermal insulation capacity towards energy savings, is investigated. Various clay/waste mixtures were prepared. The raw material mixtures were characterized and subjected to thermal gravimetric analysis, in order to optimize the mineral composition and maintain calcium and magnesium oxides content to a minimum. Test specimens were formed employing extrusion and then sintering procedure at different peak temperatures. Apparent density, water absorption capability, mechanical strength, porosity and thermal conductivity were determined on sintered specimens and examined in relation to the waste percentage and sintering temperature. The experimental results showed that ceramic production from clay/olive-mill solid waste mixtures is feasible. In fact, the mechanical properties are not significantly impacted with the incorporation of the waste in the ceramic body. However, the thermal conductivity decreases significantly, which can be of particular interest for thermal insulating materials development. Furthermore, the shape of the produced ceramics does not appear to change with the sintering temperature increase

    Movement-based subgrouping in low back pain: synergy and divergence in approaches

    Get PDF
    Background Classification systems for low back pain (LBP) aim to guide treatment decisions. In physiotherapy, there are five classification schemes for LBP which consider responses to clinical movement examination. Little is known of the relationship between the schemes

    Transformation of Industrial By-Products into Composite Photocatalytic Materials

    Get PDF
    The transformation of both calcareous and siliceous Greek power station by-products (lignite ashes) into novel composite materials with photocatalytic properties for environmental application was investigated. Particularly, a comparison between the development of coated ceramic substrates and the modification of ash surfaces is attempted. Specifically, a) the sintering process (1000 °C, 2 h) of both fly and bottom ash (either calcareous or siliceous) for their conversion into compacted ceramic substrates coated with TiO2 slurry and then further thermally treated (500 °C, 1 h) to acquire TiO2 film consistency onto the ceramic substrate and b) the process of TiO2 precipitation on lignite ash surfaces in acidic solution after neutralization, and estimation of the TiO2 percentage, are compared. The microstructures obtained were examined by XRD and SEM-EDX analysis. Vickers microhardness was also determined for the ceramic microstructures, with satisfactory results (up to 356HV). The energy gap measurements of the coatings were found to be between 3.02eV and 3.17eV, which is located between the energy gap of anatase (3.23eV) and rutile (3.02eV). The coating mass was about 0.059 g/cm2. The photocatalytic activity under visible and UV irradiation was investigated in aqueous solutions of methylene blue and methyl orange organic dyes, with encouraging results. A main advantage of the processes proposed is the immobilization of TiO2 onto largely available secondary resources, which can lead to production of value-added ‘green’ photocatalysts for the treatment of industrial effluents in the framework of circular economy

    Investigation of the Total Phenolic Content and Antioxidant Capacity of Three Sweet Pepper Cultivars (Capsicum annuum L.) at Different Development and Maturation Stages

    Get PDF
    The aim of the current research was to investigate and compare the total phenolic content and antioxidant capacity of sweet pepper cultivars at different development and maturation stages, in order to optimize the beneficial effects. For that purpose, three important sweet pepper cultivars, namely Dolmy-F1, Yahoo-F1 and Florinis-NS-700, were cultivated in a greenhouse. Their total phenolic content, ascorbic acid content and antioxidant properties were assessed at different development and maturation stages. In the aforementioned cultivars, the total phenolic content ranged from 345.2 to 602.1, 404.9 to 794.5, and 795.7 to 2220.3 ÎŒg GAE g−1 FW respectively. The ascorbic acid content ranged from 236 to 957, 258 to 1157, and 410 to 1550 ÎŒg AA g−1 FW respectively. The highest antioxidant activity was noted at the red maturity stage. Particularly the cultivar Florinis NS 700 was found to possess higher total phenolic, flavonoid phenol, non-flavonoid phenol, ascorbic acid contents, and greater antioxidant capacity, compared to the other cultivars. The results of our study recommend the consumption of the sweet peppers at red maturity stage, for achieving the maximum health-beneficial effects

    Membrane sampler for interference-free flow injection NO determination in biological fluids with chemiluminescence detection

    Get PDF
    Abstract The development of a chemiluminescence (CL) method based on the perm-selective properties of a Nafion-cellulose acetate (CA) composite membrane for the monitoring of nitric oxide (NO) in biological fluids is described. Horseradish peroxidase (HRP) was used as NO trapping solution, forming the stable compound HRP-NO. The HRP was denatured and the trapped NO was released and detected by using the luminol-H 2 O 2 system. Using a mixed (size-exclusion and polar-based) transport control, the interference effects of various compounds were minimized. The method was used for NO monitoring in simulated samples, by using a blood specimen as sample matrix. The 3σ detection limit is 0.9 × 10 −6 mol and linear semi-log calibration plot in the range 1.8 × 10 −6 to 2.7 × 10 −3 mol NO was constructed. The applied methodology was further used to prolong the NO lifetime in order to increase the sensitivity of its determination. This was based on the increase of the response in the presence of certain reductive species, which act as NO preservatives in biological fluid samples

    Synergistic Sintering of Lignite Fly Ash and Steelmaking Residues towards Sustainable Compacted Ceramics

    Get PDF
    The development of value-added ceramic materials deriving only from industrial by-products is particularly interesting from technological, economic, and environmental point of views. In this work, the synergistic sintering of ternary and binary mixtures of fly ash, steelmaking electric arc furnace dust, and ladle furnace slag for the synthesis of compacted ceramics is reported. The sintered specimens’ microstructure and mineralogical composition were characterized by SEM-EDS and XRD, respectively. Moreover, the shrinkage, apparent density, water absorption, and Vickers microhardness (HV) were investigated at different sintering temperatures and raw material compositions. The characterization of the sintered compacts revealed the successful consolidation of the ceramic microstructures. According to the experimental findings, the ceramics obtained from fly ash/steel dust mixtures exhibited enhanced properties compared to the other mixtures tested. Moreover, the processing temperature affected the final properties of the produced ceramics. Specifically, a 407% HV increase for EAFD and a 2221% increase for the FA-EAFD mixture were recorded, by increasing the sintering temperature from 1050 to 1150°C. Likewise, a 972% shrinkage increase for EAFD and a 577% shrinkage increase for the FA-EAFD mixture were recorded, by increasing the sintering temperature from 1050 to 1150°C. The research results aim at shedding more light on the development of sustainable sintered ceramics from secondary industrial resources towards circular economy

    Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons

    Get PDF
    Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties. SIGNIFICANCE STATEMENT: Despite the recognition that 30% of GABAergic cortical interneurons originate from the caudal ganglionic eminence (CGE), to date, a specific transcriptional program that selectively regulates the development of these populations has not yet been identified. Moreover, while CGE-derived interneurons display unique patterns of tangential and radial migration and preferentially populate the superficial layers of the cortex, identification of a molecular program that controls these events is lacking.Here, we demonstrate that the homeodomain transcription factor Prox1 is expressed in postmitotic CGE-derived cortical interneuron precursors and is maintained into adulthood. We found that Prox1 function is differentially required during both embryonic and postnatal stages of development to direct the migration, differentiation, circuit integration, and maintenance programs within distinct subtypes of CGE-derived interneurons

    Exercise therapy for chronic low back pain:protocol for an individual participant data meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low back pain (LBP) is one of the leading causes of disability and has a major socioeconomic impact. Despite a large amount of research in the field, there remains uncertainty about the best treatment approach for chronic LBP, and identification of relevant patient subgroups is an important goal. Exercise therapy is a commonly used strategy to treat chronic low back pain and is one of several interventions that evidence suggests is moderately effective.</p> <p>In parallel with an update of the 2005 Cochrane review, we will undertake an individual participant data (IPD) meta-analysis, which will allow us to standardize analyses across studies and directly derive results, and to examine differential treatment effects across individuals to estimate how patients’ characteristics modify treatment benefit.</p> <p>Methods/design</p> <p>We will use standard systematic review methods advocated by the Cochrane Collaboration to identify relevant trials. We will include trials evaluating exercise therapy compared to any or no other interventions in adult non-specific chronic LBP. Our primary outcomes of interest include pain, functional status, and return-to-work/absenteeism. We will assess potential risk of bias for each study meeting selection criteria, using criteria and methods recommended by the Cochrane BRG.</p> <p>The original individual participant data will be requested from the authors of selected trials having moderate to low risk of bias. We will test original data and compile a master dataset with information about each trial mapped on a pre-specified framework, including reported characteristics of the study sample, exercise therapy characteristics, individual patient characteristics at baseline and all follow-up periods, subgroup and treatment effect modifiers investigated. Our analyses will include descriptive, study-level meta-analysis and meta-regression analyses of the overall treatment effect, and individual-level IPD meta-analyses of treatment effect modification. IPD meta-analyses will be conducted using a one-step approach where the IPD from all studies are modeled simultaneously while accounting for the clustering of participants with studies.</p> <p>Discussion</p> <p>We will analyze IPD across a large number of LBP trials. The resulting larger sample size and consistent presentation of data will allow additional analyses to explore patient-level heterogeneity in treatment outcomes and prognosis of chronic LBP.</p
    • 

    corecore