1,322 research outputs found

    Precise bounds on the Higgs boson mass

    Full text link
    We study the renormalization group evolution of the Higgs quartic coupling λH\lambda_{H} and the Higgs mass mHm_{H} in the Standard Model. The one loop equation for λH\lambda_{H} is non linear and it is of the Riccati type which we numerically and analytically solve in the energy range [mt,EGU][m_{t},E_{GU}] where mtm_{t} is the mass of the top quark and EGU=1014E_{GU}=10^{14} GeV. We find that depending on the value of λH(mt)\lambda_{H}(m_{t}) the solution for λH(E)\lambda_{H}(E) may have singularities or zeros and become negative in the former energy range so the ultra violet cut off of the standard model should be below the energy where the zero or singularity of λH\lambda_{H} occurs. We find that for 0.369λH(mt)0.6130.369\leq\lambda_{H}(m_{t})\leq0.613 the Standard Model is valid in the whole range [mt,EGU][m_{t},E_{GU}]. We consider two cases of the Higgs mass relation to the parameters of the standard model: (a) the effective potential method and (b) the tree level mass relations. The limits for λH(mt)\lambda_{H}(m_{t}) correspond to the following Higgs mass relation 150mH193150\leq m_{H}\lessapprox 193 GeV. We also plot the dependence of the ultra violet cut off on the value of the Higgs mass. We analyze the evolution of the vacuum expectation value of the Higgs field and show that it depends on the value of the Higgs mass. The pattern of the energy behavior of the VEV is different for the cases (a) and (b). The behavior of λH(E)\lambda_{H}(E), mH(E)m_{H}(E) and v(E)v(E) indicates the existence of a phase transition in the standard model. For the effective potential this phase transition occurs at the mass range mH180m_{H}\approx 180 GeV and for the tree level mass relations at mH168m_{H}\approx 168 GeV.Comment: 14 pages, 7 figures. Expanded the discussion of the Higgs mass relation between the parameters of the Standard Model. Included the method of the Higgs effective potentia

    Improvement of FAO-56 Model to Estimate Transpiration Fluxes of Drought Tolerant Crops under Soil Water Deficit: Application for Olive Groves

    Get PDF
    Agro-hydrological models are considered an economic and simple tool for quantifying crop water requirements. In the last two decades, agro-hydrological physically based models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere system. Although very reliable, because of the high number of required variables, simplified models have been proposed to quantify crop water consumes. The main aim of this paper is to propose an amendment of the Food and Agricultural Organization (FAO) of the United Nations FAO-56 spreadsheet program to introduce a more realistic shape of the stress function, valid for mature olive orchards (Olea europaea L.). The modified model is successively validated by means of the comparison between measured and simulated soil water contents and actual transpiration fluxes. These outputs are finally compared with those obtained with the original version of the model. Experiments also allowed assessing the ability of simulated crop water stress coefficients to explain the actual water stress conditions evaluated on the basis of measured relative transpirations and midday stem water potentials. The results show that the modified model significantly improves the estimation of actual crop transpiration fluxes and soil water contents under soil water deficit conditions, according to the RMSEs associated with the revised model, resulting in significantly higher than the corresponding values obtained with the original version

    Quark mixings as a test of a new symmetry of quark Yukawa couplings

    Get PDF
    Based on the hierarchy exhibited by quarks masses at low energies, we assume that Yukawa couplings of up and down quarks are related by YuYd2Y_u\propto Y_d^2 at grand unification scales. This ansatz gives rise to a symmetrical CKM matrix at the grand unification (GU) scale. Using three specific models as illustrative examples for the evolution down to low energies, we obtain the entries and asymmetries of the CKM matrix which are in very good agreement with their measured values. This indicates that the small asymmetry of the CKM matrix at low energies may be the effect of the renormalization group evolution only.Comment: LaTeX file, 10 pages including 1 tabl

    Growth and reductive transformation of a gold shell around pyramidal cadmium selenide nanocrystals

    Full text link
    We report the growth of an unstable shell-like gold structure around dihexagonal pyramidal CdSe nanocrystals in organic solution and the structural transformation to spherical domains by two means: i) electron beam irradiation (in situ) and (ii) addition of a strong reducing agent during synthesis. By varying the conditions of gold deposition, such as ligands present or the geometry of the CdSe nanocrystals, we were able to tune the gold domain size between 1.4 nm to 3.9 nm and gain important information on the role of surface chemistry in hetero nanoparticle synthesis and seed reactivity, both of which are crucial points regarding the chemical design of new materials for photocatalysis and optoelectronic applications.Comment: 5 pages, 4 figure

    MOCVD Growth of ZnO Nanowires Through Colloidal and Sputtered Au Seed Via Zn[TMHD]2 Precursor

    Get PDF
    AbstractZinc oxide (ZnO) nanowire (NW) arrays were grown on Si (100) substrate by metal-organic chemical vapor deposition (MOCVD) via Zn[TMHD]2 as precursor. Here we adopted two different procedures to grow ZnO NWs namely, colloid and sputtered Au pre-deposition on Si (100) substrate. Comparative studies based on the morphology and growth behavior of ZnO NWs were performed. The grown ZnO NWs were characterized by field-emission scanning electron microscopy (FE-SEM), Atomic Force Microscopy (AFM), Co-focal laser scanning microscopy (CLSM), and Raman spectroscopy

    Evidence of widespread Cretaceous remagnetisation in the Iberian Range and its relation with the rotation of Iberia

    Get PDF
    A palaeomagnetic investigation has been carried out at 13 sites of Jurassic age in the Iberian Range (northern Spain). Two components of remanent magnetisation have been found at each site. A primary high-temperature component shows an average counterclockwise rotation with respect to the north of 33 2º clockwise about a vertical axis corresponding to the absolute rotation of the Iberian plate since the Jurassic. A secondary low-temperature component shows a systematic declination difference of 16 4º with respect to the primary component. This indicates that a rotation of Iberia must have occurred between the two acquisition times. Comparison of the magnetisation directions with previous palaeomagnetic data and with sea-floor spreading data, constrains the age of the remagnetisation between 95 and 125 Ma. The remagnetisation may be associated with the extensional phases in the Iberian Basin in the Early Cretaceous (Barremianearly Albian) or Late Cretaceous (Cenomanian). A principal characteristic of the remagnetisation is its widespread character in the Iberian Range. Ó 1998 Elsevier Science B.V. All rights reserved

    Kerr nonlinearities and nonclassical states with superconducting qubits and nanomechanical resonators

    Get PDF
    We propose the use of a superconducting charge qubit capacitively coupled to two resonant nanomechanical resonators to generate Yurke-Stoler states, i.e. quantum superpositions of pairs of distinguishable coherent states 180^\circ out of phase with each other. This is achieved by effectively implementing Kerr nonlinearities induced through application of a strong external driving field in one of the resonators. A simple study of the effect of dissipation on our scheme is also presented, and lower bounds of fidelity and purity of the generated state are calculated. Our procedure to implement a Kerr nonlinearity in this system may be used for high precision measurements in nanomechanical resonators.Comment: 5 pages, 2 figures, fixed typo
    corecore