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We propose the use of a superconducting charge qubit capacitively coupled to two resonant nanomechanical
resonators to generate Yurke-Stoler states, i.e., quantum superpositions of pairs of distinguishable coherent
states 180° out of phase with each other. This is achieved by effectively implementing Kerr nonlinearities
induced through the application of a strong external driving field in one of the resonators. A simple study of the
effect of dissipation on our scheme is also presented and lower bounds of fidelity and purity of the generated
state are calculated. Our procedure to implement a Kerr nonlinearity in this system may be used for high-
precision measurements in nanomechanical resonators.
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I. INTRODUCTION

Quantum nonlinear dynamics is an important topic in
physics. In quantum optics, nonlinear interactions have been
widely used to generate nonclassical field states such as
squeezed or sub-Poissonian light �1�. A special class of opti-
cal nonlinearity results in an intensity-dependent phase shift
commonly known as the Kerr effect. In the single-mode
case, the time evolution of an initial coherent state, under the
influence of such a Kerr medium and very low loss, will
evolve into a quantum superposition of two coherent states
180° out of phase with each other. This was first discovered
by Yurke and Stoler �2� and since then such states have been
called Yurke-Stoler states. A single-mode Kerr medium pre-
serves the photon statistics but modifies the quadrature un-
certainties generally leading to squeezing �1�.

There is great interest in observing this quantum nonlinear
coupling in solid-state systems. This would allows us to
deepen our current understanding of the classical-quantum
frontier by studying how long can superpositions of mesos-
copically distinct states survive in such systems. Some inter-
esting proposals involving nanomechanical resonators have
been published during the last years. In one scheme �3�, the
use of a time-dependent drive in a Cooper pair box �CPB�
coupled to a nanomechanical resonator is shown to generate
a number of nonlinear Hamiltonians for the latter. By para-
metrically driving a nanomechanical resonator capacitively
coupled to a superconducting coplanar waveguide, one can
generate interesting nonlinear Hamiltonians suitable for gen-
eration and detection of squeezed states as proposed in �4�.
In this system, entangled states in temperatures up to tens of
millikelvin may be achieved as discussed in �5�. Nanome-
chanical oscillators have also been shown to be feasible for
coupling to other important physical systems besides Cooper
pair boxes or microwave fields of coplanar wave guides. Na-
nomechanical resonators may, for instance, be coupled to

Bose-Einstein condensates �6�, trapped ions �7,8�, or spin
degrees of freedom of a sample of neutral atoms in the gas
phase �9�.

In this paper, we propose a theoretical scheme to engineer
Kerr Hamiltonians using a system composed of a Cooper
pair box capacitively coupled to two resonant nanomechani-
cal resonators. We show in Sec. II that such nonlinear Hamil-
tonians can be achieved in a dispersive regime by appropri-
ately choosing the system’s parameters and by using a
properly tuned strong classical field in one of the resonators.
The integration of superconducting qubits with nanoresona-
tors is an important topic and has been previously considered
in �10–15�. We start from a well-known Hamiltonian describ-
ing the interaction between a charge qubit and two resonant
nanomechanical resonators in a quantum regime �14,16–18�,
and we then include an external driving in one of the oscil-
lators. By considering the regime of intense driving, we
show that a nonlinear Kerr-type effective Hamiltonian may
be obtained. This Hamiltonian is induced by the common
coupling of the resonators with the qubit and intense external
driving. This is the central result of this paper and, as an
application, we show in Sec. III how to generate the Yurke-
Stoler state in the normal modes of the nanomechanical reso-
nators. We also discuss the zero-temperature decoherence in
a particular regime of relaxation and evaluate both the fidel-
ity and the purity of the generated superposition state. Fi-
nally, we would like to point out that the ability to implement
Kerr nonlinearities in nanomechanical resonators has re-
cently been shown to find applications also in high-precision
measurements. In a recent paper �19�, Woolley et al. pro-
posed a new protocol for high-precision measurement in a
nanomechanical resonator that makes explicit use of such
nonlinearities. This might be a potential application for the
results presented in this paper. In Sec. IV, we draw some
conclusions.
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II. MODEL AND KERR-TYPE INTERACTIONS

The simplest charge qubit �the CPB� consists of a small
superconducting island with an excess number n of Cooper
pairs connected by a tunnel junction �capacitance CJ and
Josephson coupling EJ� to a superconducting electrode. Ex-
ternal control is achieved by the application of a voltage gate
Vg coupled to the CPB via a gate capacitor with capacitance
Cg. More details can be found in the review �20�. For specific
qubit proposals and decoherence analysis, see �21�. In our
study, we will assume that the CPB is coupled capacitively to
two nanoeletromechanical systems �NEMSs� �18�, as de-
picted in Fig. 1. In the two level approximation for the CPB,
the capacitive coupling between the qubit and two NEMSs is
described by the Hamiltonian �18�

H = ��a†a + ��b†b +
��0

2
�̄z +

��̄

2
�̄x + ��1�a + a†��̄z

+ ��2�b + b†��̄z + �g�aei�et + a†e−i�et� , �1�

where a ,a† are the raising and lowering operators for the
driven NEMS �22�, b ,b† are the raising and lowering opera-
tors for the other NEMS with the same resonance frequency
�, and g represents the amplitude of the external nanome-
chanical drive �frequency �e�. The parameters appearing in
Eq. �1� are given by

��0 = − 4Ec�1 − 2ng� , �2�

��̄ = − 2EJ cos���/�0� , �3�

��i = e
VgCg,i

C	di
� �

2m�
, �4�

where Cg,i is the capacitance between the CPB and ith nano-
mechanical bias gate, C	 is the total capacitance, di is the
distance between the ith nanomechanical bias gate and the
CPB, and m is the mass of the NEMS. The couplings can be
made different by varying, for example, the distances di or
applying dc voltages to the resonators �23�. Our goal now is
to show how the application of the external driving field may
be used to engineer nonclassical states.

We first make a rotation of the qubit to new variables
�̄
→�
,

H = ��a†a + ��b†b + �g�aei�et + a†e−i�et�

+
��̄

2
�z + ��1�a + a†��cos ��z − sin ��x�

+ ��2�b + b†��cos ��z − sin ��x� , �5�

where

cos � =
�0

�̄
, �6�

sin � =
�̄

�̄
, �7�

�̄ = ��0
2 + �̄2�1/2. �8�

Now, moving to a rotating frame with frequency �e and set-

ting �̄=�e and =�−�e, we get

H = �a†a + �b†b + �g�a + a†� + ��1�ae−i�et + a†ei�et�

��cos ��z − sin ���+ei�et + �−e−i�et��

+ ��2�be−i�et + b†ei�et�

��cos ��z − sin ���+ei�et + �−e−i�et�� . �9�

We can now make the rotating wave approximation to get the
interaction picture Hamiltonian,

H = �g�ae−it + a†eit� − ��1 sin ��a�+e−it + a†�−eit�

− ��2 sin ��b�+e−it + b†�−eit� . �10�

An interesting situation appears when one takes the disper-
sive approximation �����1 ,�2 ,g� for the above Hamil-
tonian �applying similar methods to those described in �24��.
In this regime, the Hamiltonian �10� may be approximated
by

H = ��a†a�z + ��b†b�z + ���x + �r�a†b + ab†��z,

�11�

where

� = −
�1

2


sin2 � , �12�

� = −
�2

2


sin2 � , �13�

� =
g�1


sin � , �14�

r = −
�1�2


sin2 � . �15�

The Hamiltonian �11� can be diagonalized by using new
bosonic composite operators a1= �cos�

2 a+sin�
2 b� and

a2= �−sin�
2 a+cos�

2 b� with appropriate choice for �. We set
from now on �=�, i.e., �1= ��2, since for this case the

CPB

a, a†

b, b†

NEMSdriving gate

FIG. 1. Two nanomechanical resonators �with lowering opera-
tors a and b� are capacitively coupled to a CPB. One of the oscil-
lators is driven by a classical force.
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simple choice �= �
2 solves the problem. In terms of the new

operators a1=2−1/2�a+b� and a2=2−1/2�a−b�, H is written
�setting �=1� as

H̃+�−� = �a1�2�
† a1�2��z + ��x, �16�

where �=−
2�1

2

 sin2 �. We will now show that in the regime
���� ���, a Kerr-type Hamiltonian can be generated. From

�=−
2�1

2

 sin2 �, we see that ���� ��� implies that we must have
g�2�i sin � �i=1 or 2�, i.e., a strong driving �g��i�. To
make this clear, let us assume �1=�2 and ��0. By trans-
forming H+ to an interaction picture with respect to ��x, one
obtains

Ṽ+�t� =
�

2
�a1

†a1���z − i�y�e2i�t + ��z + i�y�e−2i�t�� . �17�

Now, if one defines the operator A=a1
†a1��z− i�y� and the

constant �= �
2 , the above Hamiltonian will read as

Ṽ+�t�=��Aei2�t+A†e−i2�t�. It can be shown �24� that for

���, the effective Hamiltonian Ṽ+
eff=�

�2

2� �A ,A†� can be
used. By evaluating this commutator, one finds

Ṽ+
eff = ��a1

†a1�2�x �18�

where �=�2 /2�. Remarkably, this Hamiltonian mimics the
single-mode Kerr effect. If the CPB is prepared in an eigen-
state of �x, the bosonic mode will follow a decoupled evo-
lution under the nonlinear Hamiltonian ��a1

†a1�2. Going back
to the definitions, one can see that the magnitude of the non-
linearity � is in fact controlled by the system parameters �1
�coupling constant for the interaction of resonator a with the
qubit�, g �related to the amplitude of the classical driving�,
and  �detuning between driving field and nanoresonators�.
Thus, it is possible to control the intensity of the present
Kerr-type effect, which is always important in the applica-
tions.

III. YURKE-STOLER STATE AND INCLUSION
OF DISSIPATION IN THE NEMS

Consider now the initial preparation ���0�	= �
	a�
	b�+	x,
i.e., both resonators in coherent states with the same
amplitude 
, and the CBP in an eigenstate of �x with
eigenvalue equal to one. In the transformed space of the
composite modes a1 and a2, this initial state becomes

��̃�0�	= ��2
	1�0	2�+	x. It means that the composite mode 1 is
initially in a coherent state �
1=�2
	1, mode 2 in the
vacuum state �
2=0	2, and the qubit in the eigenstate of �x
corresponding to the eigenvalue 1. For this initial condition,
Hamiltonian �18� leads to the following time-evolved state:

��̃I�t�	 = 
e−�
1�2/2�
n=0

�
�
1�n

�n!
e−it�n2

�n	1��0	2�+ 	x, �19�

with 
1=�2
. For an interaction time tI such that �tI=� /2,

the state �19� evolves to ��̃I�tI�	= �YS	1�0	2�+	, where

�YS	1 =
�
1	1 + i�− 
1	1

�2
�20�

is the Yurke-Stoler state. We remark that no measurement
whatsoever was needed to generate this state, so this
scheme is deterministic. If initially one prepares
���0�	= �
	a�−
	b�+	x and choose �1=−�2, a Yurke-Stoler
state is generated in the mode 2. Many applications for su-
perpositions of coherent states have been suggested in the
quantum optics and quantum information literature �25�,
along with a considerable variety of generation protocols
�26�.

Since we have performed a perturbation approach of the
problem �effective Hamiltonians�, it is now important to
make a brief discussion about the experimental values of the
parameters and the feasibility of the regimes we used. From
Eq. �9� and �10�, we have realized a rotating wave approxi-

mation, and this is justified when �1 ,�2�� ,�̄ ,g. According
to experimental reference �17�, it is currently possible to
achieve � /2�=1.0 GHz. For charge qubits, ordinary values

for �̄ are also about a few gigahertz �27�. In principle, the
external driving g may also be on the same order or even

stronger than � and �̄. We have also demanded �̄=�e, and
this means that the frequency of the drive field is also of a
few gigahertz. Taking all these into account, we see that the
coupling constants �1 and �2 must be at most around a few
megahertz for the rotating wave approximation to be valid.
This seems not be a problem since such coupling constants
may be tuned by changing the distance between the CPB and
the nanoresonators or through additional dc voltages on the
resonator. When going from Eq. �10� to Eq. �11�, we took the
dispersive regime that demands �1 ,�2�. Again, this might
not be a problem since �i depends on di. Finally, our last
approximation corresponds to the regime of strong driving
�1 ,�2�g. This seems to be easy to achieve since g is exter-
nally controlled via a driving gate and do not depend on the
fabrication features of the CPB or the resonators.

It is well known that superposition states of this kind are
easily corrupted in noisy or dissipative environment. For this
reason, it is important to find a way to evaluate, at least
approximately, how our generation protocol is affected by
such irreversible effects. A complete treatment of the prob-
lem would involve modeling the qubit decoherence and re-
laxation as well as different dissipative effects in the nano-
mechanical resonators. It is not our intention here to account
for all these noise mechanisms. Instead, we will present one
simple situation which allows of a very illustrative exact
solution. We consider the case in which both NEMSs �with
lowering operators a and b� lose energy to their surrounding
with decay rates �a and �b, respectively. For simplicity, we
will not include the qubit decoherence and relaxation. This is
justified if the qubit decoherence times are longer compared
to the resonators ones. At present, the charge qubits are no-
tably more robust against decoherence and relaxation than
the nanomechanical resonators. In this situation and consid-
ering �1=�2, the system master equation at zero temperature,
when expressed in terms of the mode operators, is written as
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� �̃I

�t
= − i���a1

†a1�2�x, �̃I� +
�a + �b

4
�2a1�̃Ia1

† − a1
†a1̂�̃I

− �̃Ia1
†a1� +

�a + �b

4
�2a2�̃Ia2

† − a2
†a2̂�̃I − �̃Ia2

†a2�

−
�a − �b

4
��a1

†a2 + a2
†a1��̃I + �̃I�a1

†a2 + a2
†a1��

+
�a − �b

4
�2�a1 + a2��̃I�a1

† + a2
†�� . �21�

We can see that the master equation contains extra terms due
to the transformation to normal modes. The full treatment for
arbitrary �a and �b makes analytical progress quite difficult
�28� and a numerical calculation may be presented else-
where. However, the simple regime in which both resonators
decay with similar rates can be readily investigated. In this
case, ��a+�b�� ��a−�b�, and we can drop the terms propor-
tional to ��a−�b�. This assumption is realistic here since
both resonators are assumed to be identical �same mass and
natural frequencies�. Even when this is not exactly the case,

the quantities calculated below under the assumption of
��a�b� will, at least, serve as an upper bound to the case in
which the dissipation rates are disparate.

We calculate here the degree of purity and the fidelity of
the state generated in such a noisy environment, as compared
to the Yurke-Stoler state obtained in the ideal unitary case.
Therefore, we need to take the same initial preparation used
in the ideal case, i.e., ���0�	= �
	a�
	b�+	x. As this implies
that mode 2 will be in the vacuum state, we need to consider
only the terms in Eq. �21� that contain operators for mode 1.
The master equation �21� reduces to

� �̃I

�t
= − i���a1

†a1�2, �̃I� + ��2a1�̃Ia1
† − a1

†a1�̃I − �̃Ia1
†a1� ,

�22�

where �= ��a+�b� /4. An exact solution for Eq. �22� using
the Q-function approach is presented in �29�; but we will use
a recent solution obtained directly for the density operator
�30� which allows us to readily obtain the purity P=Tr��2�
and fidelity F= �YS���YS	. According to �30�, the solution of
Eq. �22� is

�̃I�t� = � �
k,n,m=0

�

�̃n+k,m+k�0�e−i�t�n2−m2�−�t�n+m���n + k� ! �m + k�!
n ! m!


1 − e−2i�t�n−m�−2�t

2i��n − m� + 2�
�k �2��k

k!
�n	11�m�� � �0	22�0� � �+ 	xx�+ � ,

�23�

where �̃n,m�0� are the �Fock� matrix elements of the initial
density matrix of mode 1.

In Fig. 2, we show the decay of fidelity �solid� and purity
�dotted�, as a function of the dimensionless parameter
�=� /� for 
=2, at the time for which the Yurke-Stoler state
arises, i.e., �tI=� /2. We can see that the fidelity is quite
high �F�0.99� for ��10−3. As expected, Fig. 2 reveals that
the purity is more affected with increasing � than is the
fidelity. However, it also presents satisfactory values for
�10−3 �P0.99�. For more realistic values such as
�10−2, we find F�0.95 and P�0.90.

Finally, a few words about the detection of superpositions
of pairs of distinguishable coherent states are in order. This is
an important topic, and several methods for detecting these
states have already been proposed in the literature �31–33�.
Among them, it seems that the most suitable method for the
system treated here is the one presented in �32�, whereby
motional states of a single-trapped ion have been experimen-
tally determined. This method relies upon the implementa-
tion of displacement operators and Jaynes-Cummings inter-
actions to determine both the density matrix in the number
state basis and the Wigner function. We think these trapped
ion techniques could be an alternative to detect the Yurke-
Stoler state proposed in this paper. However, it should be
remarked that a CPB coupled to two NEMSs has not yet
been operated in strong-coupling regime.

IV. CONCLUSIONS

To summarize, we have proposed a theoretical scheme to
engineer a nonlinear Kerr Hamiltonian using superconduct-
ing charge qubits and nanoresonators. We have shown how
such systems may be used to mimic a Kerr Hamiltonian. The
formation of the Yurke-Stoler states in the composite mode

0 0.002 0.004 0.006 0.008 0.01

0.92

0.94

0.96

0.98

1

F
,P

Γ

FIG. 2. Fidelity �solid� and purity �dotted� in function of the
dimensionless parameter �=� /� for 
=2, at the moment the
Yurke-Stoler state would be perfectly generated in the ideal lossless
case.
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of both resonators occurs naturally at an appropriate interac-
tion time without needing to make a measurement on the
system. For the case in which both resonators have equal
decay rates, a simple exact expression for the total density
matrix was derived. The present treatment, while not com-
plete �more complex models of dissipation and noise could
be considered�, serves as an upper bound for the case in
which the qubit decoherence can be neglected. In this con-
text, we have shown that the fidelity of the generated super-
position state can be very good for moderate values of the
decay constants.

As a final remark, recently Woolley et al. �19� proposed a
new protocol for high-precision measurement in a nanome-
chanical resonator that makes explicit use of a Kerr nonlin-

earity. The method of the present paper could enable the use
of linear nanomechanical resonators for such measurements
instead of the intrinsically nonlinear nanomechanical resona-
tors assumed in �19�.
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