2,631 research outputs found

    Combustion and operating characteristics of spark-ignition engines

    Get PDF
    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined

    Six months of mass outflow and inclined rings in the ejecta of V1494 Aql

    Get PDF
    V1494 Aql was a very fast nova which reached a visual maximum of mv≃ 4.0 by the end of 1999 December 3. We report observations from 4 to 284 d after discovery, including submillimetre- and centimetre-band fluxes, a single MERLIN image and optical spectroscopy in the 410 to 700 nm range. The extent of the radio continuum emission is consistent with a recent lower distance estimate of 1.6 kpc. We conclude that the optical and radio emission arises from the same expanding ejecta. We show that these observations are not consistent with simple kinematical spherical shell models used in the past to explain the rise and fall of the radio flux density in these objects. The resolved remnant structure is consistent with an inclined ring of enhanced density within the ejecta. Optical spectroscopy indicates likely continued mass ejection for over 195 d, with the material becoming optically thin in the visible sometime between 195 and 285 d after outburst

    Culture expansion in low-glucose conditions preserves chondrocyte differentiation and enhances their subsequent capacity to form cartilage tissue in three-dimensional culture.

    Get PDF
    Culture conditions that preserve a stable chondrocyte phenotype are desirable in cell-based cartilage repair to maximize efficacy and clinical outcome. This study investigates whether low-glucose conditions will preserve the chondrocyte phenotype during culture expansion. Articular chondrocytes were culture-expanded in media supplemented with either low (1 mM) or high (10 mM) glucose. The metabolic phenotype, reactive oxygen species generation, and mRNA expression of markers of differentiation or catabolism were assessed by reverse-transcription quantitative polymerase chain reaction after four population doublings (PDs) and subsequent tissue formation capacity determined using pellet cultures. Continuous monolayer culture was used to determine the population doubling limit. After expansion in monolayer for four PDs, chondrocytes expanded in low-glucose conditions exhibited higher expression of the differentiation markers SOX9 and COL2A1 and reduced expression of the catabolic metalloproteinase matrix metallopeptidase 13. When chondrocytes expanded in low glucose were cultured in micropellets, they consistently generated more cartilaginous extracellular matrix than those expanded in high glucose, as evaluated by wet weight, sulfated glycosaminoglycan content, and hydroxyproline assay for collagen content. The same pattern was observed whether high or low glucose was used during the pellet culture. During expansion, chondrocytes in high-glucose generated 50% more reactive oxygen species than low-glucose conditions, despite a lower dependence on oxidative phosphorylation for energy. Furthermore low-glucose cells exhibited >30% increased population doubling limit. These data suggests that low-glucose expansion conditions better preserve the expression of differentiation markers by chondrocytes and enhance their subsequent capacity to form cartilage in vitro. Therefore, low glucose levels should be considered for the expansion of chondrocytes intended for tissue engineering applications.This study was funded by the Medical Research Council/Engineering and Physical Sciences Research Council (EPSRC) discipline bridging initiative grant PPA026, EPSRC Platform Grant EP/E046975/1; Human Frontier Science Program Grant RGP0025/2009-C and Arthritis Research U.K. grants 19654 and 19344

    Intermittency and local Reynolds number in Navier-Stokes turbulence: A cross-over scale in the Caffarelli-Kohn-Nirenberg integral

    Get PDF
    We study space-time integrals, which appear in the Caffarelli-Kohn-Nirenberg (CKN) theory for the Navier-Stokes equations analytically and numerically. The key quantity is written in standard notations δ(r)=1/(νr)∫Qr(∇,u)2dxdtδ(r)=1/(νr)∫Qr∇u2dxdt, which can be regarded as a local Reynolds number over a parabolic cylinder Q r . First, by re-examining the CKN integral, we identify a cross-over scale r∗∝L(∥∇u∥2L2¯¯¯¯¯¯¯¯¯¯¯¯∥∇u∥2L∞)1/3,r*∝L‖∇u‖L22¯‖∇u‖L∞21/3, at which the CKN Reynolds number δ(r) changes its scaling behavior. This reproduces a result on the minimum scale r min in turbulence:r2min∥∇u∥∞∝ν,rmin2‖∇u‖∞∝ν, consistent with a result of Henshaw et al. [“On the smallest scale for the incompressible Navier-Stokes equations,” Theor. Comput. Fluid Dyn.1, 65 (1989)10.1007/BF00272138]. For the energy spectrum E(k) ∝ k −q   (1 < q < 3), we show that r * ∝ ν a with a=43(3−q)−1a=43(3−q)−1. Parametric representations are then obtained as ∥∇u∥∞∝ν−(1+3a)/2‖∇u‖∞∝ν−(1+3a)/2 and r min ∝ ν3(a+1)/4. By the assumptions of the regularity and finite energy dissipation rate in the inviscid limit, we derive limp→∞ζpp=1−ζ2limp→∞ζpp=1−ζ2 for any phenomenological models on intermittency, where ζ p is the exponent of pth order (longitudinal) velocity structure function. It follows that ζ p ⩽ (1 − ζ2)(p − 3) + 1 for any p ⩾ 3 without invoking fractal energy cascade. Second, we determine the scaling behavior of δ(r) in direct numerical simulations of the Navier-Stokes equations. In isotropic turbulence around R λ ≈ 100 starting from random initial conditions, we have found that δ(r) ∝ r 4 throughout the inertial range. This can be explained by the smallness of a ≈ 0.26,with a result that r * is in the energy-containing range. If the β-model is perfectly correct, the intermittency parameter a must be related to the dissipation correlation exponent μ as μ=4a1+a≈0.8,μ=4a1+a≈0.8, which is larger than the observed μ ≈ 0.20. Furthermore, corresponding integrals are studied using the Burgers vortex and the Burgers equation. In those single-scale phenomena, the cross-over scale lies in the dissipative range.The scale r * offers a practical method of quantifying intermittency. This paper also sorts out a number of existing mathematical bounds and phenomenological models on the basis of the CKN Reynolds number

    Vortices and the entrainment transition in the 2D Kuramoto model

    Get PDF
    We study synchronization in the two-dimensional lattice of coupled phase oscillators with random intrinsic frequencies. When the coupling KK is larger than a threshold KEK_E, there is a macroscopic cluster of frequency-synchronized oscillators. We explain why the macroscopic cluster disappears at KEK_E. We view the system in terms of vortices, since cluster boundaries are delineated by the motion of these topological defects. In the entrained phase (K>KEK>K_E), vortices move in fixed paths around clusters, while in the unentrained phase (K<KEK<K_E), vortices sometimes wander off. These deviant vortices are responsible for the disappearance of the macroscopic cluster. The regularity of vortex motion is determined by whether clusters behave as single effective oscillators. The unentrained phase is also characterized by time-dependent cluster structure and the presence of chaos. Thus, the entrainment transition is actually an order-chaos transition. We present an analytical argument for the scaling KEKLK_E\sim K_L for small lattices, where KLK_L is the threshold for phase-locking. By also deriving the scaling KLlogNK_L\sim\log N, we thus show that KElogNK_E\sim\log N for small NN, in agreement with numerics. In addition, we show how to use the linearized model to predict where vortices are generated.Comment: 11 pages, 8 figure

    Developing a quality assurance metric: a panoptic view

    Get PDF
    This article is a post-print of the published article that may be accessed at the link below. Copyright @ 2006 Sage Publications.There are a variety of techniques that lecturers can use to get feedback on their teaching - for example, module feedback and coursework results. However, a question arises about how reliable and valid are the content that goes into these quality assurance metrics. The aim of this article is to present a new approach for collecting and analysing qualitative feedback from students that could be used as the first stage in developing more reliable quality assurance metrics. The approach, known as the multi-dimensional crystal view, is based on the belief that individuals have different views on the benefits that the embedded process in a system can have on the behaviour of the system. The results of this study indicate that in the context of evaluation and feedback methods, the multi-dimensional approach appears to provide the opportunity for developing more effective student feedback mechanisms

    The Population of the Galactic Center Filaments: Position Angle Distribution Reveal a Degree-scale Collimated Outflow from Sgr A* along the Galactic Plane

    Full text link
    We have examined the distribution of the position angle (PA) of the Galactic center filaments with lengths L>66L > 66'' and <66 < 66'' as well as their length distribution as a function of PA. We find bimodal PA distributions of the filaments, long and short populations of radio filaments. Our PA study shows the evidence for a distinct population of short filaments with PA close to the Galactic plane. Mainly thermal short radio filaments (<66<66'') have PAs concentrated close to the Galactic plane within 60<PA<12060^\circ < \rm PA <120^\circ. Remarkably, the short filament PAs are radial with respect to the Galactic center at l<0l <0^\circ, and extend in the direction toward Sgr A*. On a smaller scale, the prominent Sgr E HII complex G358.7-0.0 provides a vivid example of the nearly radial distribution of short filaments. The bimodal PA distribution suggests different origin for two distinct filament populations. We argue that alignment of the short filament population results from the ram pressure of a degree-scale outflow from Sgr A* that exceeds the internal filament pressure, and aligns them along the Galactic plane. The ram pressure is estimated to be 2×106\times10^6\, cm3^{-3}\, K at a distance of 300pc, requiring biconical mass outflow rate 10410^{-4} \msol\, yr1^{-1} with an opening angle of 40\sim40^\circ. This outflow aligns not only the magnetized filaments along the Galactic plane but also accelerates thermal material associated with embedded or partially embedded clouds. This places an estimate of \sim6 Myr as the age of the outflow.Comment: 19 pages, 8 figures, ApJL (June 2nd, 2023

    Older adults, falls and technologies for independent living: a life space approach

    Get PDF
    This paper draws attention to the need for further understanding of the fine details of routine and taken-for-granted daily activities and mobility. It argues that such understanding is critical if technologies designed to mitigate the negative impacts of falls and fear-of-falling are to provide unobtrusive support for independent living. The reported research was part of a large, multidisciplinary, multi-site research programme into responses to population ageing in Ireland, Technologies for Independent Living (TRIL). A small, exploratory, qualitative life-space diary study was conducted. Working with eight community-dwelling older adults with different experiences of falls or of fear-of-falls, data were collected through weekly life-space diaries, daily-activity logs, two-dimensional house plans and a pedometer. For some participants, self-recording of their daily activities and movements revealed routine, potentially risky behaviour about which they had been unaware, which may have implications for falls-prevention advice. The findings are presented and discussed around four key themes: ‘being pragmatic’, ‘not just a faller’, ‘heightened awareness and blind spots’ and ‘working with technology’. The findings suggest a need to think creatively about how technological and other solutions best fit with people's everyday challenges and needs and of critical importance, that their installation does not reduce an older adult to ‘just a faller’ or a person with a fear-of-falls
    corecore