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Abstract

We study space-time integrals which appear in Caffarelli-Kohn-Nirenberg (CKN) theory for the

Navier-Stokes equations analytically and numerically. The key quantity is written in standard

notations δ(r) = 1/(νr)
∫

Qr
|∇u|2 dx dt, which can be regarded as a local Reynolds number over a

parabolic cylinder Qr.

First, by re-examining the CKN integral we identify a cross-over scale r∗ ∝ L

(

‖∇u‖2
L2

‖∇u‖2
L∞

)1/3

, at

which the CKN Reynolds number δ(r) changes its scaling behavior. This reproduces a result on

the minimum scale rmin in turbulence: r2
min‖∇u‖∞ ∝ ν, consistent with a result of Henshaw et al.

(1989). For the energy spectrum E(k) ∝ k−q (1 < q < 3), we show that r∗ ∝ νa with a = 4
3(3−q)−1.

Parametric representations are then obtained as ‖∇u‖∞ ∝ ν−(1+3a)/2 and rmin ∝ ν3(a+1)/4. By

the assumptions of the regularity and finite energy dissipation rate in the inviscid limit, we derive

limp→∞
ζp

p = 1 − ζ2 for any phenomenological models on intermittency, where ζp is the exponent

of p-th order (longitudinal) velocity structure function. It follows that ζp ≤ (1 − ζ2)(p − 3) + 1 for

any p ≥ 3 without invoking fractal energy cascade.

Second, we determine the scaling behavior of δ(r) in direct numerical simulations of the Navier-

Stokes equations. In isotropic turbulence around Rλ ≈ 100 starting from random initial conditions,

we have found that δ(r) ∝ r4 throughout the inertial range. This can be explained by the smallness

of a ≈ 0.26, with a result that r∗ is in the energy-containing range. If the β-model is perfectly

correct, the intermittency parameter a must be related to the dissipation correlation exponent µ

as µ = 4a
1+a ≈ 0.8 which is larger than the observed µ ≈ 0.20.

Furthermore, corresponding integrals are studied using the Burgers vortex and the Burgers

equation. In those single-scale phenomena, the cross-over scale lies in the dissipative range. The

scale r∗ offers a practical method of quantifying intermittency. This paper also sorts out a number

of existing mathematical bounds and phenomenological models on the basis of the CKN Reynolds

number.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

The question of regularity of the three-dimensional Navier-Stokes equations is one of the

most prominent unsolved problems in mathematics. The relevance of this issue exceeds that

of pure mathematics, as the equations themselves represent an important physical process

of turbulence. The integrity of this model, and our interpretation of the related physics

involved, thus rests on whether the equations do admit unique classical solutions.

It is well-known that in the two-dimensional case the regularity is maintained with unique

smooth solutions being defined for all time. This is the case because the quantity ‖ω‖2
L2 is

bounded from above for all time. In the case of three dimensions, however, this is known to

hold for short time intervals only, assuming sufficiently smooth initial conditions. This can-

not be guaranteed for an arbitrary time interval due to the vortex-stretching term, which

is absent in two dimensions. At high Reynolds numbers, where turbulence becomes pro-

nounced, the possibility that the Navier-Stokes equations may develop finite time singular-

ities cannot be ruled out [1–5].

There have been many previous attempts to tackle the regularity problem, notably Leray

[6], who first introduced the concept of weak solutions, followed by Hopf [7]. Later Scheffer

[8], subsequently refined by Caffarelli, Kohn and Nirenberg (hereafter, CKN) [9], set limits

on the dimension of the possible singular set of solutions. Others have produced a range

of global weak, and local or particular strong solutions, but the existence of global classical

solutions has not yet been established for general smooth initial conditions.

This mathematical problem is connected with the problem of turbulence. A conventional

picture of energy cascade in 3D Navier-Stokes turbulence goes as follows. For a flow with

huge Reynolds number Re = UL/ν > Recr, where U , L, ν and Recr denote the characteristic

velocity, length scale, kinematic viscosity and critical Reynolds number, respectively. The

large-scale disturbances are subject to instability and they generate disturbances with a

length scale l1 and velocity scale v1. The corresponding Reynolds number Re1 = v1l1/ν

is still large and first-order disturbances are unstable and break down, resulting in smaller

length l2 and velocity v2, whose Reynolds number is Re2 = v2l2/ν. This process continues

until the n-th step whose Reynolds number Ren = vnln/ν becomes O(1), or on the order

of Recr. In a nutshell, the regularity can be monitored by watching a suitably defined local

Reynolds number. The CKN criterion was originally developed for testing the regularity
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of Navier-Stokes flows, but here we will show how useful it is in the characterization of

intermittency in turbulence. See also [10] for another approach to intermittency.

In recent years, much progress has been made, both analytically (see in particular [3],

[11] and [12]) and numerically. There have been numerous contributions to the field from

the latter perspective, of which mention here only a few closely related to the main focus of

the present paper. In particular, studies of possible singularities [13–15] and the monitoring

of enstrophy and vorticity growth rates [16, 17]. See also [18–31] for various aspects of the

Navier-Stokes equations.

In Section II we introduce the equations that will be the main subject of study of the

paper. Section III presents numerical results on the scaling of the CKN integral. Section IV

gives examples by exact solutions. Section V is devoted to a summary and discussion.

II. MATHEMATICAL FORMULATION

A. Caffarelli-Kohn-Nirenberg integrals

The three-dimensional Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p + ν∇2

u + F , (1)

together with the continuity equation

▽ · u = 0, (2)

describe the motion of viscous incompressible fluids, where u denotes the fluid velocity, p

the pressure, ν the kinematic viscosity and F the external body force, with appropriate

initial and boundary conditions.

These equations can be transformed into vorticity equations

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2

ω + ∇× F , (3)

where ω = ∇× u is the vorticity.

The function δ(r) is a local average of ∇u over a parabolic cylinder. This non-dimensional

quantity is defined by the space-time integral

δ(r) =
1

νr

∫

Qr

|∇u|2 dx dt, (4)
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where r is the distance from the center point x0. The integral is taken over the space-time

region, a parabolic cylinder,

Qr(x, t) =

{

(x, t) : |x − x0| < r, t0 < t < t0 +
r2

ν

}

, (5)

where x = (x, y, z), with a center point x0 = (x0, y0, z0) and reference time t0. Here

the four-dimensional space-time volume of the parabolic cylinder (5) is given by |Qr| =

4πr3/3 · r2/ν = 4πr5/3ν. The function δ(r) depends on the center point (x0, t0), but this

dependence is made implicit for simplicity of notations.

According to the CKN theory [9, 29, 30], if δ(r) ≤ ǫCKN near (x0, t0), where ǫCKN is a

positive constant, then (x0, t0) is a regular point, that is, the velocity must be bounded there.

In fact, the CKN theory refines Scheffer’s previous estimate [8], to show that the Hausdorff

dimension of the possible singular sets of velocity in (3+1)-dimensional space-time does not

exceed 1. See [32, 33] for more recent works.

We may interpret δ(r) as the local Reynolds number as follows [30]

Re =
r2

ν

(

1

|Qr|

∫

Qr

|▽u|2 dx dt

)1/2

=

(

3

4π
δ(r)

)1/2

. (6)

We will study the following questions: What kind of scaling behavior do we expect for δ(r)

? and in which range are these power-laws observed ?

We consider a theory for the case of R
3 first and then translate the result to the case of

T
3 or homogeneous turbulence. Let us consider the total kinetic energy, the enstrophy and

the energy dissipation rate

E ′ =

∫

R3

|u|2

2
dx, Q′ =

∫

R3

|∇u|2

2
dx, ǫ′ = ν

∫

R3

|∇u|2dx,

where ′ denotes total spatial integrals in R
3.

We examine the power-laws for δ(r) by examining the definition (4). A normalization of

(4) over the volume gives

δ(r) =
4π

3

r4

ν2

1

|Qr|

∫

Qr

|∇u|2 dx dt,

which means that in the limit of r → 0 we have

δ(r) →
4π

3

r4

ν2
|∇u|2 (x0, t0), (7)
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picking up a point-wise value of the strain rate at (x0, t0). On the other hand, in the limit

of r → ∞ we have

δ(r) →
r

ν2

1

r2/ν

∫ t0+r2/ν

t0

dt

∫

R3

|∇u|2 dx =
r

ν2

∫

R3

|∇u|2 dx, (8)

where the bar denotes a long time-average. Hence, the function δ(r) shows two distinctive

behaviors and the cross-over takes place at r = r∗, where

r∗ =

(

3

4π

∫

R3 |∇u|2 dx

‖∇u‖2
∞

)1/3

=

(

3

4π

ǫ′

ν‖∇u‖2
∞

)1/3

. (9)

Because small-scale structure of finite-energy turbulence is expected to be not much different

from that of homogeneous turbulence [34], the above expression translates to

r∗ = L

(

3

4π

1
L3

∫

T3 |∇u|2 dx

‖∇u‖2
∞

)1/3

= L

(

3

4π

ǫ

ν‖∇u‖2
∞

)1/3

(10)

in the case of T
3. Here ǫ = ν

L3

∫

T3 |∇u|2 dx is the energy dissipation rate per unit volume.

Solving (10) for ‖∇u‖∞, we find

‖∇u‖∞ ≈

√

3

4π

√

ǫ

ν

(

L

r∗

)3/2

. (11)

Plugging this into (7) and assuming that the maximum strain is attained at x0, we find

δ(r) ≈

(

L

r∗

)3
ǫr4

ν3
(12)

for small r. By demanding that δ(rmin) = 1 because the cascade terminates when the local

Reynolds number becomes O(1), we determine the smallest scale excited in the flow as

rmin ≈

(

ν3

ǫ

)1/4
(r∗

L

)3/4

. (13)

Eliminating r∗ from (11) and (13), we obtain a condition

r2
min‖∇u‖∞ ∝ ν.

This is equivalent to a rigorous result on the estimate of the smallest length scale in turbu-

lence [35, 36]

rmin ∝

√

ν

‖∇u‖∞
.

We note that this estimate can also be obtained by the methods of ladder inequalities [2].

It is defined as a reciprocal of the wavenumber therein, beyond which Fourier coefficients

decay exponentially. See also [37] on how the minimum scale is affected by intermittency. In

what follows, we will write simply ǫ for ǫ(t) because its temporal fluctuations are not large.
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B. The ν-dependence of r∗

We show that a power-law of r∗ follows from that of E(k). The following assumptions

are made in the subsequent argument.

1. The energy dissipation rate ǫ and viscosity ν are independent in the inviscid limit.

2. The energy spectrum follows E(k) ∝ k−q in the inertial subrange, with 1 < q < 3.

3. An ensemble and a spatial averages are equal (ergodic hypothesis).

4. The velocity gradient is finite for a small, but fixed ν.

We write
r∗
L

= F (ν),

because if F were independent of ν, we would have non-intermittent turbulence (K41). We

have therefore

‖∇u‖∞ ∝

√

ǫ

ν
F (ν)−3/2 (14)

and

rmin ≈

(

ν3

ǫ

)1/4

F (ν)3/4. (15)

By the assumptions 1), 2) and the definition of ǫ

ǫ = 2ν

∫ kd

0

k2E(k)dk

together with kd = 1/rmin, we have

ǫ ≈
2ν

3 − q

(

(

ν3

ǫ

)− 1
4

F (ν)−
3
4

)3−q

.

It follows that

F (ν) ≈

(

2

3 − q

ν

ǫ

)
4

3(3−q)
(

ν3

ǫ

)− 1
3

,

that is,

F (ν) ∝ νa,

where

a ≡
4

3(3 − q)
− 1. (16)

Thus, r∗ also has a power-law dependence on ν. Inverting (16) we obtain

q =
5 + 9a

3(1 + a)
. (17)
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C. Parametrization of intermittency via a

By writing
r∗
L

=
( η

L

)4a/3

∝ νa,

we find from (11) and (13)

‖∇u‖∞ ≈

√

3

4π

√

ǫ

ν

(

L

η

)2a

, (18)

and

rmin ≈ η
( η

L

)a

(19)

as parameterizations of the maximum strain and the minimum scale excited in turbulence.

We also note in passing that Kolmogorov velocity (with intermittency effect taken into

account) is given by

vKol ∝ (ǫν)1/4

(

L

η

)a

and acceleration A by

A ∝
v3
Kol

ν
.

To summarize, in terms of a we have the following parameterizations

‖∇u‖∞ ∝ ν− 1+3a
2 , rmin ∝ ν

3(a+1)
4 , r∗ ∝ νa. (20)

On the other hand, under the assumption of the β-model [38], we can write

‖∇u‖∞ ∝ ν− 5−D
1+D , rmin ∝ ν

3
1+D , r∗ ∝ ν

3−D
1+D (21)

in terms of the self-similarity dimension D. Equivalently, under the same assumption, using

the exponent of dissipation correlation µ = 3 − D, we have

‖∇u‖∞ ∝ ν− 2+µ

4−µ , rmin ∝ ν
3

4−µ , r∗ ∝ ν
µ

4−µ . (22)

Note that the parametrization in terms of a does not require the assumption of fractal

cascade. In Table I we compare some phenomenological models of intermittency [34, 38, 39].

The extreme case of intermittency E(k) ∝ k−8/3, beyond which no energy cascade can be

sustained, was obtained using the Euler equations in [34] and with weak solutions of the

Navier-Stokes equations in [40].
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TABLE I: Comparison of models of intermittency

General K41 Ruelle She-Leveque (SL) Burgers Sulem-Frisch (SF)

Intermittency exponent a 0 1/9 1/5 1/3 3

D 3−a
1+a 3 13/5 7/3 2 0

µ 4a
1+a 0 2/5 2/3 1 3

‖∇u‖∞ ν−(1+3a)/2 (ǫ/ν)1/2 ν−2/3 ν−4/5 ν−1 ν−5

rmin ν3(a+1)/4 η =
(

ν3/ǫ
)1/4

ν5/6 ν9/10 ν ν3

vKol ν(1−3a)/4 (ǫν)1/4 ν1/6 ν1/10 ν0 ν−2

Hölder continuity C
1−3a

3(1+a) C1/3 C1/5 C1/9 C0 C−2/3

E(k) ∝ k−q q = 5+9a
3(1+a) q = 5/3 q = 9/5 q ≈ 5/3 + 0.03 < 17/9 q = 2 q = 8/3

In [39], the distribution of Lyapunov exponents for the Navier-Stokes equations was

studied and its behavior was found to change at µ = 2/5 on the basis of the β-model. In

[41], a model of intermittency was developed on the basis of log-Poisson statistics of the

energy dissipation rate, which shows agreement with experiments. We note that in [42] a

scaling rmin ∝ ν was suggested for low-Reynolds number turbulence, which corresponds to

a = 1/3. See also references cited therein. The relationship a = µ/(4 − µ) is depicted in

Fig.1.

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

a

µ

K41
Ruelle

SL

Burgers

SF

FIG. 1: The a-µ diagram, with relationship

a = µ
4−µ . The horizontal line denotes a =

1/3.
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D. A constraint on the scaling exponents

We derive one constraint on the p-th order scaling exponents ζp for the velocity structure

function

〈(δur)
p〉 ∝ rζp,

where the brackets denote an ensemble average.

Again, by 1),

ǫ = 2ν

∫ kd

0

k2E(k)dk

is independent of ν in the limit ν → 0. Because kd is related with the L∞-norm of the

velocity gradient and E(k) with the L2-norm, it should give a constraint on ζp, We will

determine what this is.

By the definition
〈(

δur

r

)p〉 1
p

∝ r
ζp

p
−1,

we have

‖∇u‖Lp = lim
r→rmin

〈(

δur

r

)p〉 1
p

∝ ν
3(a+1)

4

“

ζp

p
−1

”

and [43]

‖∇u‖L∞ = lim
p→∞

lim
r→rmin

〈(

δur

r

)p〉 1
p

∝ ν
3(a+1)

4
(α−1), (23)

where α ≡ limp→∞
ζp

p
is finite by 2) [44]. Here we essentially make use of the regularity of

the Navier-Stokes solutions. An asymptotic linearity of ζp follows from the finiteness of α.

In fact, we can obtain a more precise expression for the exponents.

By (23) and (20)1, we find in the limit of ν → 0

α =
1 − 3a

3(1 + a)
. (24)

(Note that a =
1 − 3α

3(1 + α)
, hence the inverse has the same functional form.) Because of

E(k) ∝ k−q and (17) and the definition q = 1 + ζ2, we also have

ζ2 + 1 =
5 + 9a

3(1 + a)
. (25)

Eliminating a between (24) and (25), we obtain

ζ2 + lim
p→∞

ζp

p
= 1. (26)
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Up to here, fractal nature of energy cascade such as in the β-model is not assumed. The

condition (26) implies

ζp = (1 − ζ2)p + o(p) (27)

for large p. A super-linear behavior in ζp, as in the log-normal model, is thus excluded by

the finiteness of α. In other words, this argument supports an asymptotic linear behavior of

the scaling exponent predicted in the β-model[45]. In the framework of multi-fractal theory

for turbulence we may relate 1 − ζ2 = hmin, where hmin is the minimum possible scaling

exponent, see e.g. [46]. In two-dimensional turbulence, the scaling exponents have bounds

as a result of vorticity conservation in the inviscid limit [47]. See also [48] for ’asymptotic

linearization’ of scaling exponents in more general cases.

A simple inequality for ζp follows from this. Setting

ζp = (1 − ζ2)p + fp, with lim
p→∞

fp = 0,

we have f3 = 1 − 3(1 − ζ2) by ζ3 = 1. By the convexity fp ≤ f3 for p ≥ 3, we find

ζp ≤ (1 − ζ2)(p − 3) + 1. (28)

We note that the prediction from the β-model

ζp =
p

3
−

µ

3
(p − 3)

satisfies (26) for arbitrary µ(> 0), that is, we cannot fix µ by the constraint (26), as it

becomes an identity.

If ζ2 = 2
3
, (28) implies that

ζp ≤
p

3
, for any p ≥ 3.

On the other hand, if ζ2 = µ+2
3

, we would have

ζp ≤
p

3
−

µ

3
(p − 3),

which means (28) places the β-model as an upper-bound of the possible scaling.

It should be noted that all the above results are obtained by balancing powers of ν, hence

the arguments are valid only in the limit of ν → 0. For finite Reynolds number turbulence,

(28) would not hold as is.
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Remark: By a rigorous analysis in [40] we have instead q ≤
5 + 9a

3(1 + a)
(see Appendix A),

this leads to

ζ2 + lim
p→∞

ζp

p
≤ 1.

It can also be obtained by writing (28)

1 − ζ2 ≥
ζp − 1

p − 3
for p > 3

and passing to the limit p → ∞. See also [49–52] for mathematical works on intermittency.

III. NUMERICAL EXPERIMENTS

A. Numerical Methods

The pseudo-spectral method was used for the evaluation of nonlinear terms and the

fourth-order Runge-Kutta for time-stepping. The initial data are generated with the energy

spectrum

E(k) = k4e−k2

, (29)

where the phases of the Fourier coefficients are randomized.

The numerical simulations have been performed for various values of Reynolds number

by choosing the number of grid points N , and viscosity ν to ensure that the turbulence

is developed and resolved. Results were obtained from a N = 256 cubic grid, with mesh

size ∆x = 2π/N and time increment ∆t = 2 × 10−3. Typically, in the case of forced

simulations, we have as an estimate of accuracy kmaxη ≥ 1.5 for ν = 0.005 and kmaxη ≥ 1.1

for ν = 0.0025 throughout the time evolution. For the latter (slightly under-resolved) case a

check was performed with a N = 512 cubic grid to ensure agreement, and hence that none

of our results are numerical artifacts.

The integral δ(r) is calculated for a sequence of values of r, increasing outwards from

the center point x0 of the spatial integration region. The increasing radii of integration are

taken as

rj =
2πdj−1

N
, for j = 1, 2, 3, ..., p, (30)

to determine the power-law relationship between δ(r) and r. The fundamental period is 2π,

and d > 1 is chosen such that the sphere at rp covers at least 10% of the total spatial range

2π.
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By monitoring the time-evolution of the energy and the enstrophy, the lower limit of the

time integral t0 is set after the turbulence reaches a statistically steady state. The time

integral is taken over the range t0 < t < t0 + r2/ν. The quantity δ(r) was calculated for

various different center points in order to determine the effect of position. These points were

chosen, some at fixed (0, 0, 0), (π, 0, 0), (0, π, 0), (π, π, 0), and others at points of local (in

space and time) maxima of |∇u|2.

Two important quantities are E(t) = 1
2
〈|u|2〉 and Q(t) = 1

2
〈|ω|2〉, which denote the

spatial average of kinetic energy and the enstrophy, respectively.

B. Freely-decaying case

We first study freely-decaying turbulence. In this case we take t0 after the time corre-

sponding to the peak enstrophy as this is the point at which turbulence begins to decay [29].

The parameter d is chosen to be 1.92.

Because the Reynolds number is not sufficiently large, the energy spectrum does not

display the characteristic Kolmogorov power-law for fully-developed turbulence [26, 28] for

sufficiently long time to evaluate the space-time integral accurately. This can be seen in

Fig.2, which shows a log-log plot of the energy spectra as a function of the wavenumber

for various times throughout the time range covered by the integral. Figure 3 shows the

evolution of the enstrophy, for the two values of viscosity throughout this time interval.

In Fig.4 we show local Reynolds number δ(r) against r. Due to the rapid decay of energy

mentioned earlier, a clear power-law behavior is not observed. Nevertheless we do observe

an r4 behavior for small r and a shallower power-law for larger r.

C. Forced Turbulence

To integrate δ(r) for a sufficiently long time to ensure its convergence, we introduce

a forcing term. At every time step, the vorticity components for wavenumber |k| = 1,

are held fixed at their initial values, effectively injecting energy back into the system and

sustaining a statistically steady state of turbulence. As can be seen from Fig.5, the energy

spectra display a power-law close to −5/3, corresponding to the Kolmogorov spectrum in

turbulence. This persists throughout the whole time interval required for the evaluation
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FIG. 3: Evolution of the enstrophy for the

freely-decaying case with ν = 5×10−3 (solid)

and ν = 2.5 × 10−3 (dashed).

of the space-time integral. Figure 6 shows the evolution of enstrophy associated with this

forced computation. At first, we see an increase up to a maximum, it then levels out into a

statistically steady state, which fluctuates about an average value. Figure 7 is shown to verify

that the dissipation rate ǫ(t) is independent of ν. We can then calculate the Kolmogorov

length scale based on the time average of the enstrophy in each case of viscosity, using

η = (ν3/ǫ)
1/4

= 1/kd, where ǫ = 2νQ is the time-averaged energy dissipation rate. It is

η ≈ 2.2 × 10−2 for ν = 5 × 10−3, and η ≈ 1.3 × 10−2 for ν = 2.5 × 10−3. For these forced

computations, Taylor microscale Reynolds number Rλ =
√

10
3

E
ν
√

Q
. is about 70 for ν = 0.005

and 120 for ν = 0.0025. The estimates of η, corresponding to the values of viscosity, are

indicated by an arrow on Figs.8 and 9.

This statistically steady state produces a clearer power-law behavior. The integral was

evaluated at different center points, for two different values of viscosity and d = 1.92. The

double-log plots of δ(r) with r4 for each viscosity are shown in Figs.8 and 9. At least at this

moderately high Reynolds number, the function δ(r) displays a clear power-law δ(r) ∝ r4

throughout the inertial subrange. As noted above this is expected only in the dissipative

range.

Then why do we have δ(r) ∝ r4 in the whole the inertial subrange ? To explain this,
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.

we compare in Fig.10, the time evolution of r∗ with those of the Taylor micro-scale λ(t) =
√

10νE(t)/ǫ(t), and the Kolmogorov scale η(t) = (ν3/ǫ(t))1/3 , where ǫ(t) = 2νQ(t). Also
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plotted is the integral scale L(t) defined by

L(t) =
3π

4E(t)

∫ ∞

0

k−1E(k, t)dk.

It is clear that they are very different; r∗ ≈ 1 takes a value which is a multiple of λ and it

is larger than η by almost two orders-of-magnitude. It should be noted that the cross-over

scale lies close to the energy-containing range, whose characteristic scale is L(t) ≈ 1.5. This

makes a marked contrast to the exact solutions of Burgers vortex and equations, where r∗

lies in the dissipative scale. (See Section IV below.)

To study its behavior more precisely, we show the time-averaged r∗ for various values of

ν in Fig.11. (The original definition r∗/L =
(

3
4π

ǫ(t)
ν‖∇u‖∞

)1/3

is used for its evaluation here,

but no change is observed even if we take time-average ǫ(t) first .) It shows that r∗ shows

a power-law dependence on ν with a small exponent, that is, r∗ ∝ νa with a ≈ 0.26. More

importantly, r∗ = O(1) in the energy-containing range for all the values of ν used. This is

why we do not observe a transition to δ(r) ∝ r within the inertial subrange.

We have noted above that ζp behaves linearly at large p just like the β-model. If the β-

model is perfectly correct that would imply the dissipation correlation exponent µ(= 3−D)

takes µ = 4a
1+a

≈ 0.8, which is much larger than the experimentally accepted range 0.2-

0.4. Indeed, we see in Fig.12 that the dissipation correlation has µ = 0.20. This means that
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while the β model is not valid quantitatively, it remains valid qualitatively. For experimental

works on dissipation correlation and intermittency, see [53–55] and more recent [56–61].

In an attempt to find a more singular behavior, that is, δ(r) ∝ rn with n < 4, we have

also computed a flow form of colliding orthogonal Lamb dipoles [62, 63]. The motivation

was to locate the point (x0, t0) in a region where intense vorticity is formed. It turns out,

however, that such a point moves in space significantly and we could not observe a clear

power-law behavior, although a general trend of decreasing exponent in δ(r) as r increases

was still seen (figure omitted).
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IV. EXAMPLES BY EXACT SOLUTIONS

Fluid turbulence is known to be a multi-scale phenomenon. In this section, for comparison

we work out the function δ(r) on the basis of exact solutions, which represent single-scale

phenomena.
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A. Burgers Vortex

We consider the Burgers vortex, an exact solution of the Navier-Stokes equations subject

to a constant straining flow. The velocity for the Burgers vortex tube in cylindrical polar
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coordinates is given by


















ur = −αr,

uθ = Γ
2πr

(

1 − e−
αr2

2ν

)

,

uz = 2αz,

(31)

and the vorticity by

ω =
αΓ

2πν
exp

(

−
αr2

2ν

)

.

Here, the constant α denotes rate of strain and Γ velocity circulation. It can be shown that

|∇u|2 = 6α2 +

(

∂uθ

∂r

)2

+
(uθ

r

)2

, (32)

see e.g. [4]. The definition of δ(r) is similar to the one in previous section. In this case, the

integral to be calculated is

δ(r) =
1

ν

∫

Q2D
r

|∇u|2 dx dt. (33)

The bounds of Q2D
r are given by |x−x0| < r and |t− t0| < r2/ν, where x = (x, y). Because

this is a steady state solution, the time integral simplifies to a multiplication by r2/ν [29],

we have

δ(r) =
r2

ν2

∫

V 2D
r

|∇u|2 dx, (34)

where V 2D
r denotes a disc of radius r. Noting that as r → 0,

1

|V 2D
r |

∫

V 2D
r

|∇u|2 dx → |∇u|2(x0),

with |V 2D
r | = πr2, we have

δ(r) →











π
r4

ν2
|∇u|2(x0) as r → 0,

r2

ν2

∫

R2 |∇u|2dx as r → ∞.
(35)

The cross-over takes place at r = r∗, where

r4

ν2
|∇u|2(x0) ≈

r2

ν2

∫

R2

|∇u|2dx,

or,

r∗ =

(

∫

R2 |∇u|2dx

|∇u|2(x0)

)1/2

.

Using |∇u|2 ≈ ω2 ≈
(

αΓ
2πν

)2
and ǫ = ν

∫

R2 |∇u|2dx ≈ αΓ2

4π
, we find

r∗ ≈
(πν

α

)1/2

.
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This is proportional to the core radius of the Burgers vortex.

We can confirm this result by using the exact solution. In the limit of large Reynolds

number, r/ν ≫ 1, we may neglect the first term on the right hand side of (32). The spatial

part of the integral becomes

1

ν

∫ r

0

|∇u|2 2πr dr ≃
2π

α

(

αΓ

4πν

)2 ∫ αr2

2ν

0

[

(

2e−ξ −
1 − e−ξ

ξ

)2

+

(

1 − e−ξ

ξ

)2
]

dξ, (36)

where ξ = αr2/2ν [4]. It follows that

∫ r

0

|∇u|2 2πr dr →







r2|∇u|2 for r ≪
√

ν/α,
∫

R2 |∇u|2dx for r ≫
√

ν/α.
(37)

This confirms the transition at r ≈
√

ν/α and we have as r → 0

δ(r) ∝
1

π

(

Γ

ν

)2

ξ2,

which is consistent with the above δ(r) ∝ r4. We note that in this case r∗ lies in the dissipa-

tion range; r∗ ∝ ν1/2. Unlike Navier-Stokes turbulence, a typical multi-scale phenomenon,

this example has a single scale.

B. Burgers equation

As another example, we consider the Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (38)

As a comparison, we compute δ(r), which in one dimension is given by;

δ(r) =
r

ν

∫

Q1D
r

(

∂u

∂x

)2

dx dt, Q1D
r (x, t) =

{

(x, t) : |x − x0| < r, tmax −
r2

ν
< t < tmax

}

.

(39)

The power-law can be worked out by a simple analysis for

δ(r) =
r3

ν2

∫

Q1D
r

(

∂u

∂x

)2

dx. (40)

In the limit r → 0 the integral scales as ∝ r(∂u/∂x)2, and we have

δ(r) ∝















2
r4

ν2

(

∂u

∂x

)2

as r → 0,

r3

ν2

∫∞
−∞

(

∂u

∂x

)2

dx as r → ∞

(41)
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The cross-over occurs at

r∗ =

∫∞
−∞

(

∂u

∂x

)2

dx

2 supx

(

∂u

∂x

)2 .

An exact steadily traveling wave solution can be written as

u = U tanh
Ux

2ν
,

after a translation. For this solution, we have ∂u
∂x

= U2

2ν
sech2 Ux

2ν
and

∫∞
−∞
(

∂u
∂x

)2
dx = 2U3

3ν
, thus

we find

r∗ =
4

3U
ν.

The cross-over scale is on the order of the width of the shock wave. Again, r∗ is in the

dissipative range unlike for the Navier-Stokes flows; r∗ ∝ ν1.

We can confirm this by the exact solution. It gives in this case

δ(r) = 4ξ3

(

tanh ξ −
1

3
tanh3 ξ

)

,

where ξ = Ur
2ν

. It follows that

δ(r) ≈ 4ξ4 as ξ → 0,

in agreement with the above analysis.

A pseudo-spectral calculation was performed in a way analogous to that of the three-

dimensional case, starting from initial data u0 = sin x, with x0 = π located at the position

of shock wave formation for the velocity field. The scaling of δ(r) is close to r4 for small

r and becomes closer to a shallower r3 as r increases, consistent with the above argument

(figure omitted).

V. SUMMARY AND DISCUSSION

Intermittency in turbulence is related with the mathematical problem of the Navier-

Stokes equations in that it is associated with rapid growth of local vorticity. By using the

CKN local Reynolds number, we have developed a systematic method of characterization of

intermittency.

First, we have re-examined the CKN integral and identified a cross-over scale r∗, at which

the scaling behavior of δ(r) changes. On this basis, we have introduced the parameter a
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characterizing intermittency as r∗ ∝ νa. As a by-product we have derived the constraint

limp→∞
ζp

p
= 1 − ζ2 for the scaling exponents ζp of the velocity structure functions in the

limit ν → 0. This in turn implies that ζp = (1 − ζ2)p + o(p).

Second, we have performed direct numerical simulations of the Navier-Stokes equations

at moderately high Reynolds numbers (≈ 100) to examine the behavior of the CKN integral

δ(r). We have found a scaling δ(r) ∝ r4 in the whole inertial range, not only in the dissipative

range. We explain the absence of cross-over phenomenon by finding r∗ is actually in the

energy-containing range. The intermittency parameter a is found to be 0.26. If the β-

model is perfectly correct, a = 0.26 would imply µ = 0.8 for the dissipation correlation

exponent, which is beyond the acceptable range. We point out that while the β-model

is not quantitatively perfect, but its prediction serves as an upper-bound for the scaling

exponents. Similar cross-over phenomena have been studied on the basis of exact solutions

of the Burgers vortex and the Burgers equation.

By the definition of the cross-over scale (10) and r∗ ∝ νa, for stronger intermittency

with larger a, near-singular structures are captured better by the L∞-norm which is more

sensitive than the L2-norm. If we make ν smaller in higher Reynolds number computations,

r∗ will be shifted to smaller values assuming that a remains unchanged. It might be possible

to observe the transition, as was noted to be the case for the 1D Burgers equation with

r∗ ∝ ν1. Such studies with higher Reynolds number will be left for future study.

All the results obtained here are based on the framework of phenomenology, but we

have double-checked their consistency against rigorous mathematical theory, where possible

e.g. [36, 40]. It would be interesting to make the present theory solid, say, by applying

Besov-space techniques. This will also be left for future study.
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APPENDIX A: RELATION TO DOERING-GIBBON BOUNDS

Notations in this section are the same as those of [40].

As seen above, we have ‖∇u‖∞ ≈ Re(1+3a)/2 for r∗ ∝ νa. It follows that
〈

κ2
n,1

〉

≤

cnL−2Re
3
2
(a+1), where Re ∝ 1/ν. Then we have

〈

κ2
n

〉

≤ Re
3
2
(a+1)n−1

n Re
1
n

= Re
3
2
(a+1)− 3a+1

2n ,

in place of (78) and (79) of [40]. Using Lemma 1 of [40], we find

L2n
〈

κ2
n

〉n
≤ cnRe

3
2
(a+1)n− 3a+1

2 ,

or

L 〈κn〉 ≤ cnRe
3
4
(a+1)− 3a+1

4n .

Comparing this with Re
1

3−q
− 1

2n

q−1
3−q , we get

q ≤
5 + 9a

3(a + 1)
=

5

3
+

4a

3(1 + a)

for the exponent of the energy spectrum E(k) ≈ k−q.

APPENDIX B: LOG-POISSON MODEL

The Log-Poisson model has

ζp =
p

9
+ 2

(

1 −

(

2

3

)p/3
)

for the scaling exponents. It follows that

α = lim
p→∞

ζp

p
= 1/9 ≈ 0.111,

and

1 − ζ2 = 2

(

2

3

)
2
3

−
11

9
≈ 0.304 6= lim

p→∞

ζp

p
.

This model is thus not consistent with the fundamental constraint (26).

Equivalently, in terms of E(k) ∝ k−q, a = 1−3α
3(1+α)

= 1/5 implies q = 5+9a
3(1+a)

= 17
9
≈ 1.888,

whereas actually it has ζ2 + 1 = 29
9
− 2

(

2
3

)2/3
≈ 1.6959.
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