559 research outputs found

    Do financial constraints really matter? A case of understudied African firms

    Get PDF
    Abstract: Using a system of equations to account for the simultaneity, inter‐temporal and interdependent nature of corporate decisions, we document several new insights into how emerging market firms allocate funds across competing uses‐of‐funds. Emerging market firms save most of the operating cash flow. When the firms spend, they allocate the remainder to dividend payments first, followed by debt retirements, then equity repurchases and lastly investments. This pecking order of prioritizing savings and dividends ahead of other uses‐of‐funds highlight difficulties in accessing external finance and a stubbornly resilient signalling motive for firms operating under a high degree of information asymmetry and agency costs. We further find significant asymmetry and heterogeneity in the allocation of funds conditional on credit constraints, deviations from target and around the financial crisis. Our findings signal the need for policies that improve access to external finance and information disclosure in emerging markets

    IceCube expectations for two high-energy neutrino production models at active galactic nuclei

    Full text link
    We have determined the currently allowed regions of the parameter spaces of two representative models of diffuse neutrino flux from active galactic nuclei (AGN): one by Koers & Tinyakov (KT) and another by Becker & Biermann (BB). Our observable has been the number of upgoing muon-neutrinos expected in the 86-string IceCube detector, after 5 years of exposure, in the range 10^5 < E/GeV < 10^8. We have used the latest estimated discovery potential of the IceCube-86 array at the 5-sigma level to determine the lower boundary of the regions, while for the upper boundary we have used either the AMANDA upper bound on the neutrino flux or the more recent preliminary upper bound given by the half-completed IceCube-40 array (IC40). We have varied the spectral index of the proposed power-law fluxes, alpha, and two parameters of the BB model: the ratio between the boost factors of neutrinos and cosmic rays, Gamma_nu/Gamma_{CR}, and the maximum redshift of the sources that contribute to the cosmic-ray flux, zCRmax. For the KT model, we have considered two scenarios: one in which the number density of AGN does not evolve with redshift and another in which it evolves strongly, following the star formation rate. Using the IC40 upper bound, we have found that the models are visible in IceCube-86 only inside very thin strips of parameter space and that both of them are discarded at the preferred value of alpha = 2.7 obtained from fits to cosmic-ray data. Lower values of alpha, notably the values 2.0 and 2.3 proposed in the literature, fare better. In addition, we have analysed the capacity of IceCube-86 to discriminate between the models within the small regions of parameter space where both of them give testable predictions. Within these regions, discrimination at the 5-sigma level or more is guaranteed.Comment: 24 pages, 6 figures, v2: new IceCube-40 astrophysical neutrino upper bound and IceCube-86 discovery potential used, explanation of AGN flux models improved, only upgoing neutrinos used, conclusions strengthened. Accepted for publication in JCA

    The Effects of Voluntary Disclosure and Dividend Propensity on Prices Leading Earnings

    Get PDF
    We investigate the joint effects of dividend propensity (i.e. whether a firm pays cash dividends) and voluntary disclosure on the relationship between current stock returns and future earnings. We examine whether dividend propensity and voluntary disclosure act as substitutes or complements in the financial communication process. We also examine whether the effects of dividend propensity and voluntary disclosure vary between high- and lowgrowth firms. Consistent with prior studies, we find that share price anticipation of earnings improves with increasing levels of annual report narrative disclosure, and that firms that pay dividends exhibit higher levels of share price anticipation of earnings than non-dividend-paying firms. The paper adds to the literature on share price anticipation of earnings in two crucial respects. First we show that the associations of voluntary disclosure and dividend propensity with share price anticipation of earnings are statistically significant for high-growth firms and insignificant for low-growth firms. Second we show that the significant effects we find for dividend propensity and voluntary disclosure in high-growth firms are not perfectly additive

    Calibration and Characterization of the IceCube Photomultiplier Tube

    Full text link
    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure

    Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna

    Get PDF
    The random superposition of many weak sources will produce a stochastic background of gravitational waves that may dominate the response of the LISA (Laser Interferometer Space Antenna) gravitational wave observatory. Unless something can be done to distinguish between a stochastic background and detector noise, the two will combine to form an effective noise floor for the detector. Two methods have been proposed to solve this problem. The first is to cross-correlate the output of two independent interferometers. The second is an ingenious scheme for monitoring the instrument noise by operating LISA as a Sagnac interferometer. Here we derive the optimal orbital alignment for cross-correlating a pair of LISA detectors, and provide the first analytic derivation of the Sagnac sensitivity curve.Comment: 9 pages, 11 figures. Significant changes to the noise estimate

    Search for Relativistic Magnetic Monopoles with IceCube

    Get PDF
    We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km3^{3}. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km3^{3} of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of \Phi_{\mathrm{90%C.L.}}\sim 3\e{-18}\fluxunits for ÎČ≄0.8\beta\geq0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost Îł\gamma below 10710^{7}. This result is then interpreted for a wide range of mass and kinetic energy values.Comment: 11 pages, 11 figures. v2 is minor text edits, no changes to resul

    Lateral Distribution of Muons in IceCube Cosmic Ray Events

    Get PDF
    In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations
    • 

    corecore