805 research outputs found

    Representation Of A Nonspherical Ice Particle By A Collection Of Independent Spheres For Scattering And Absorption Of Radiation: 2. Hexagonal Columns And Plates

    Get PDF
    [1] A cloud of nonspherical ice particles may be represented in radiation models by a collection of spheres, in which the model cloud contains the same total volume of ice and the same total surface area as the real cloud but not the same number of particles. The spheres then have the same volume-to-area (V/A) ratio as the nonspherical particle. In previous work this approach was shown to work well to represent randomly oriented infinitely long circular cylinders for computation of hemispherical reflectance, transmittance, and absorptance. In this paper the results have been extended to hexagonal columns and plates using a geometric optics technique for large particles and finite-difference-time-domain theory (FDTD) for small particles. The extinction efficiency and single-scattering coalbedo for these prisms are closely approximated by the values for equal-V/A spheres across the ultraviolet, visible, and infrared from 0.2 to 25 mum wavelength. Errors in the asymmetry factor can be significant where ice absorptance is weak, at visible wavelengths for example. These errors are greatest for prisms with aspect ratios close to 1. Errors in hemispheric reflectance, absorptance, and transmittance are calculated for horizontally homogeneous clouds with ice water paths from 0.4 to 200,000 g m(-2) and crystal thicknesses of 1 to 400 mum, to cover the range of crystal sizes and optical depths from polar stratospheric clouds (PSCs) through cirrus clouds to surface snow. The errors are less than 0.05 over most of these ranges at all wavelengths but can be larger at visible wavelengths because of the ideal shapes of the prisms. The method was not tested for, and is not expected to be accurate for, angle-dependent radiances

    Representation Of A Nonspherical Ice Particle By A Collection Of Independent Spheres For Scattering And Absorption Of Radiation: 3. Hollow Columns And Plates

    Get PDF
    The ability of an assembly of spheres to represent scattering and absorption by a nonspherical ice crystal of the same volume-to-area (V/A) ratio was previously evaluated for convex shapes (circular cylinders and hexagonal prisms). Here we extend the comparison to indented and hollow prisms, which are common in ice clouds. In the equivalent-sphere representation, the crystal mass and surface area are both conserved. Internal surfaces as well as external surfaces contribute to the total surface area; in the model representation both become external surfaces of spheres. The optical depth tau of the model cloud is thus greater than that of the real cloud by the ratio A/4P, where A is the total area of the nonspherical particle and P is the orientation-averaged projected area. This ratio, which we call fluffiness,\u27\u27 is unity for convex shapes but may exceed 2 for clusters of hollow bullets. In effect, the scattering at interior surfaces of a hollow crystal becomes classified as multiple scattering in the model of ice spheres. Therefore, rather than directly comparing the asymmetry factor (g) and single-scattering albedo (omega(o)) of the hollow crystal to those of the equal-V/A sphere, it is more appropriate to compare the product tau(1 - g)omega(o), because this quantity largely determines the bulk radiative properties of the cloud. Errors in albedo, absorptance, and transmittance of ice clouds, caused by the equal-V/A representation, are presented for a range of aspect ratios, indentation depths, and ice-water paths at visible and near-infrared wavelengths

    Detailed Spectroscopic and Photometric Analysis of DQ White Dwarfs

    Full text link
    We present an analysis of spectroscopic and photometric data for cool DQ white dwarfs based on improved model atmosphere calculations. In particular, we revise the atmospheric parameters of the trigonometric parallax sample of Bergeron et al.(2001), and discuss the astrophysical implications on the temperature scale and mean mass, as well as the chemical evolution of these stars. We also analyze 40 new DQ stars discovered in the first data release of the Sloan Digital Sky Survey.Comment: 6 pages,3 figures, 14th European Workshop on White Dwarfs, ASP Conference Series, in pres

    A dissipated energy comparison to evaluate fatigue resistance using 2PB

    Get PDF
    Flexural fatigue due to repeated traffic loading is a process of cumulative damage and one of the main failure modes of flexible pavement structures. Typically, micro-cracks originate at the bottom of an asphalt concrete layer due to horizontal tensile strains. Micro-cracking starts to propagate towards the upper layers under repeated loading which can lead to pavement failure. Different approaches are usually used to characterise fatigue resistance in asphalt mixtures including the phenomenological approach, the fracture mechanics approach and the dissipated energy approach. This paper presents a comparison of fatigue resistance calculated for different dissipated energy models using 2 Point Bending (2PB) at IFSTTAR in Nantes. 2PB tests have been undertaken under different loading and environmental conditions in order to evaluate the properties of the mixtures (stiffness, dissipated energy, fatigue life and healing effect)

    Sources of light-absorbing aerosol in arctic snow and their seasonal variation

    Get PDF
    Two data sets consisting of measurements of light absorbing aerosols (LAA) in arctic snow together with suites of other corresponding chemical constituents are presented; the first from Siberia, Greenland and near the North Pole obtained in 2008, and the second from the Canadian arctic obtained in 2009. A preliminary differentiation of the LAA into black carbon (BC) and non-BC LAA is done. Source attribution of the light absorbing aerosols was done using a positive matrix factorization (PMF) model. Four sources were found for each data set (crop and grass burning, boreal biomass burning, pollution and marine). For both data sets, the crops and grass biomass burning was the main source of both LAA species, suggesting the non-BC LAA was brown carbon. Depth profiles at most of the sites allowed assessment of the seasonal variation in the source strengths. The biomass burning sources dominated in the spring but pollution played a more significant (though rarely dominant) role in the fall, winter and, for Greenland, summer. The PMF analysis is consistent with trajectory analysis and satellite fire maps

    Influence of aggregate absorption and diffusion properties on moisture damage in asphalt mixtures

    Get PDF
    An experimental study was undertaken to characterise moisture sensitivity of asphalt mixtures by comparing certain physico-chemical properties of selected aggregates of different mineralogies to the moisture-induced strength degradation of the aggregate–mastic bonds. The aim of the study was to evaluate the effect of using different aggregate types (as substrates) with a single mastic type that had shown severe moisture sensitivity in the past when combined with a susceptible aggregate substrate. Four different aggregate types and an asphalt mastic (made with a 40/60 pen base bitumen) were used. Aggregate moisture sorption at ambient temperature was characterised using gravimetric techniques. Aggregate specific surface area was determined by octane adsorption using a dynamic vapour sorption device. Dynamic mechanical analysis techniques based on data from a dynamic shear rheometer were used to characterise the rheological properties of the asphalt mastic. Aggregate–mastic bond strength as a function of moisture conditioning time was determined using a tensile pull-off test set-up. The results were used to estimate equilibrium moisture uptake, diffusion coefficient, characteristic diffusion time, and aggregate ‘porosity’. The effect of moisture on bond strength was aggregate substrate-type-dependent with three out of the four aggregates performing well and the fourth performing poorly. The moisture absorption and diffusion properties of the poorly performing aggregates were worse than the ‘good’ performing aggregates. Susceptible aggregate–mastic bonds had high porosity, high moisture absorption, high diffusion coefficient and contained granite as substrates. Results of statistical analyses suggested that the differences in moisture sensitivity of the other three aggregates were not significant. Therefore, two unique damage models, one for ‘good’ performing and another for ‘poor’ performing were proposed to characterise moisture damage sensitivity of asphalt. The influence of aggregate moisture absorption and diffusion on asphalt mixture moisture damage was found to be aggregate-type-dependent. The results also suggested that in a susceptible mixture, the effect of the substrate aggregate may be more influential than the effect of mastic. The results have important implications for the selection of coarse aggregate for asphalt mix design

    Moisture damage evaluation of aggregate–bitumen bonds with the respect of moisture absorption, tensile strength and failure surface

    Get PDF
    The moisture-induced deterioration of asphalt mixture is because of the loss of adhesion at the aggregate–bitumen interface and/or the loss of cohesion within the bitumen film. An experimental study was undertaken in this paper to characterise the effects of moisture on the direct tensile strength of aggregate–bitumen bonds. The aim of this paper was to evaluate the moisture sensitivity of aggregate–bitumen bonds in several different aspects, which included moisture absorption, tensile strength and failure surface examination. Moisture absorption and mineralogical compositions of aggregate were measured using gravimetric techniques and a Mineral Liberation Analyser (MLA), respectively, with the results being used to explain the moisture sensitivity of aggregate–bitumen bonds. Aggregate–bitumen bond strength was determined using a self-designed pull-off system with the capability of accurately controlling the bitumen film thickness. The photographs of the failure surface were quantitatively analysed using Image-J software. The results show that the magnitude of the aggregate–bitumen bonding strength in the dry condition is mainly controlled by bitumen. However, the retained tensile strength after moisture conditioning was found to be influenced by the mineralogical composition as well as the moisture diffusion properties of the aggregates. The linear relationship between retained tensile strength and the square root of moisture uptake suggests that the water absorption process controls the degradation of the aggregate–bitumen bond. The results also suggested that the deterioration of aggregate–bitumen bonds is linked to the decrease in cohesive failure percentage

    Observation of reversible moisture damage in asphalt mixtures

    Get PDF
    Durability of asphalt mixtures conditioned in hot water was investigated using stiffness measurements. Stiffness generally decreased with conditioning time. The effect of moisture on stiffness was found to be reversible as moisture conditioned-asphalt mixtures that had lost up to 80% of their initial stiffness fully recovered upon subsequent drying. Estimates of mastic film thickness and length of diffusion paths obtained from image analysis of X-ray CT scans of the asphalt mixtures suggest moisture diffusion was mainly restricted to the bulk mastic. The results suggest cohesive rather than adhesive failure dominated the durability of asphalt mixtures under the long-term moisture exposure used in this study

    Examination of moisture sensitivity of aggregate–bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests

    Get PDF
    In this study, the moisture sensitivity of different kinds of aggregates and bituminous binders is examined by comparing the performance between five empirical test methods for loose mixtures – static immersion test, rolling bottle test (RBT), boiling water test (BWT), total water immersion test and the ultrasonic method – with more fundamental surface energy-based test data. The RBT and BWT results showed that limestone aggregates perform better than granite aggregates and that, for unmodified binders, stiffer binders provide better moisture resistance compared with softer binder. Both tests were sensitive to aggregate type, binder type and anti-stripping agent type. Ranking of the mixtures by RBT and BWT was in general agreement with the surface energy-based tests, especially for mixtures that performed worst or best in RBT and BWT. The magnitude of the work of debonding in the presence of water was found to be aggregate type dependent which suggests the physico-chemical properties of aggregates may play a fundamental and more significant role in the generation of moisture damage, than bitumen properties

    Noise and Nonlinearity in Measles Epidemics: Combining Mechanistic and Statistical Approaches to Population Modeling

    Get PDF
    We present and evaluate an approach to analyzing population dynamics data using semimechanistic models. These models incorporate reliable information on population structure and underlying dynamic mechanisms but use nonparametric surface-fitting methods to avoid unsupported assumptions about the precise form of rate equations. Using historical data on measles epidemics as a case study, we show how this approach can lead to better forecasts, better characterizations of the dynamics, and better understanding of the factors causing complex population dynamics relative to either mechanistic models or purely descriptive statistical time-series models. The semimechanistic models are found to have better forecasting accuracy than either of the model types used in previous analyses when tested on data not used to fit the models. The dynamics are characterized as being both nonlinear and noisy, and the global dynamics are clustered very tightly near the border of stability (dominant Lyapunov exponent λ < 0). However, locally in state space the dynamics oscillate between strong short-term stability and strong short-term chaos (i.e., between negative and positive local Lyapunov exponents). There is statistically significant evidence for short-term chaos in all data sets examined. Thus the nonlinearity in these systems is characterized by the variance over state space in local measures of chaos versus stability rather than a single summary measure of the overall dynamics as either chaotic or nonchaotic
    • …
    corecore