
vol. 151, no. 5 the american naturalist may 1998

Noise and Nonlinearity in Measles Epidemics: Combining
Mechanistic and Statistical Approaches to Population Modeling
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Schaffer and coworkers (reviewed by Kot et al. 1988;
Schaffer et al. 1990), which contend that these data pro-
vide compelling evidence of chaotic dynamics occurring

abstract: We present and evaluate an approach to analyzing in a natural biological population. It remains uncertain
population dynamics data using semimechanistic models. These whether any populations of macro-organisms exhibit
models incorporate reliable information on population structure chaos (Hastings et al. 1993). Recent analyses based on
and underlying dynamic mechanisms but use nonparametric

nonlinear time-series modeling (Turchin 1993; Ellnersurface-fitting methods to avoid unsupported assumptions about
and Turchin 1995) and mechanistic population modelingthe precise form of rate equations. Using historical data on measles
(Hanski et al. 1993; Costantino et al. 1995; Dennis et al.epidemics as a case study, we show how this approach can lead to

better forecasts, better characterizations of the dynamics, and a 1995) have identified a few likely cases, but these meth-
better understanding of the factors causing complex population ods need further testing and the data sets on macro-
dynamics relative to either mechanistic models or purely descrip- organisms are all short (usually 30–100 data points).
tive statistical time-series models. The semimechanistic models are Epidemic data series are longer, typically over 400
found to have better forecasting accuracy than either of the model

data points, and their accuracy is probably better due totypes used in previous analyses when tested on data not used to fit
the importance attached to human disease notifications.the models. The dynamics are characterized as being both nonlin-
Consequently, as Tidd et al. (1993, p. 258), observe,ear and noisy, and the global dynamics are clustered very tightly

near the border of stability (dominant Lyapunov exponent λ < 0). ‘‘Chaos in childhood diseases is thus something of a test
However, locally in state space the dynamics oscillate between case on which hinges a good deal more than the dynam-
strong short-term stability and strong short-term chaos (i.e., be- ics of some half dozen pathogenic agents.’’
tween negative and positive local Lyapunov exponents). There is Two main approaches have been used to analyze these
statistically significant evidence for short-term chaos in all data

data, leading to different conclusions about the dynam-sets examined. Thus the nonlinearity in these systems is character-
ics. The first approach (Schaffer et al. 1990; Tidd et al.ized by the variance over state space in local measures of chaos
1993) is built on comparisons between the data and sim-versus stability rather than a single summary measure of the over-

all dynamics as either chaotic or nonchaotic. ple mechanistic models consisting of a few differential
equations (described below). For measles in particular,Keywords: population dynamics, modeling, measles, time-series
certain features of the data are consistent with modelanalysis, local Lyapunov exponents.
output only for parameter values at which the models are
chaotic. Measles is consequently interpreted as a deter-

* To whom correspondence should be addressed; E-mail: ellner@stat.ncsu.edu. ministic chaotic system with some noise superimposed
† Present address: Geophysical Statistics Project, National Center for Atmospheric (e.g., sampling effects due to finite population size).
Research, Boulder, Colorado 80307.

The second approach is based on fitting phenomeno-
‡ Present address: Department of Mental Hygiene, School of Public Health, Johns

logical time-series modelsHopkins University, Baltimore, Maryland 21205.

Am Nat. 1998. Vol. 151, pp. 425–440.  1998 by The University of Chicago.
0003-0147/98/5105-0003$03.00. All rights reserved. xt1T 5 f(xt, xt2L, . . . , xt2mL, t) 1 et (1)



426 The American Naturalist

Table 1: The experimental design of model comparisons in(e.g., Nychka et al. 1992; Ellner and Turchin 1995; Ellner
Tidd et al. (1993) and in this articleet al. 1995). Here, xt is the log number of cases in time

period t (quarterly, monthly, or weekly totals); T is the
Mechanistic Phenomenological Semimechanisticforecasting interval; et represents exogenous environmen-

tal noise; L is the time lag; m is the index for number of
Tidd et al.lags; and f is a flexible nonlinear model whose parameters

(1993):
are estimated from the data. Using (1), measles epidem-

Linear ⋅ ⋅ ⋅ M1, M2, M3 ⋅ ⋅ ⋅
ics in large developed-world cities were estimated to be Nonlinear SEIR, RAS ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
weakly stable rather than chaotic (Ellner et al. 1995) and This article:
clustered near the border between stable and chaotic dy- Nonlinear SEIR FNN, SNP SC FNN
namics. The dynamics were also estimated to have non-

Note: The prediction models compared by Tidd et al. (1993) werenegligible noise (Ellner et al. 1995; mean r 2 5 0.82 6
either nonlinear mechanistic models (SEIR, RAS), in which the only0.09 [SD], n 5 12 cities, for forecasts one-quarter ahead).
noise is demographic stochasticity due to finite population size, or lin-Both modeling approaches have significant limitations.
ear phenomenological models driven by high levels of environmental

A data analysis based on a fully specified mechanistic noise (M1, M2, M3). The SEIR and RAS models are described in the
model assumes that we know everything there is to know text. M1 is a linear Gaussian autoregressive process, M2 is nonlinear

transformation of a linear Gaussian autoregressive process, and M3 isabout the processes causing the dynamics and that all rel-
M2 superimposed on an annual periodic trend. Thus, M1 is a specialevant processes are included in the model. In fact, ob-
case of M2, which is a special case of M3. In this article, we comparetaining a low-dimensional mechanistic epidemic model
SEIR with models that allow both nonlinearity and substantial levels of

requires drastic simplifying assumptions, and many po- environmental noise (FNN, SNP, SC FNN models are described in the
tentially important aspects of the dynamics must be text).
omitted (e.g., variability among individuals and the fam-

parametric surface-fitting methods (described below) toily and social structure of disease transmission). Data
avoid unsupported assumptions about the exact form ofanalyses that assume the models to be quantitatively ac-
rate equations. In the case of measles, the semimechanis-curate are consequently prone to bias. In particular, use
tic model that we propose uses mechanistic informationof a deterministic model can strongly bias analyses to-
to define a priori a meaningful state space and to specifyward ‘‘detecting’’ chaos in nonchaotic data (Ellner 1991).
the model’s compartmental structure, but the contactConversely, an analysis based on (1) assumes that we
rate equation is estimated from the data.know nothing whatsoever about any of the underlying

As with epidemics, our state of knowledge about eco-processes and treats the data as simply a string of num-
logical systems is typically somewhere between the ex-bers. This reduces the precision of estimates and thus de-
tremes implicit in mechanistic versus phenomenologicalcreases the likelihood of detecting interesting features in
modeling: we do not have complete knowledge about allthe data (Tidd et al. 1993), including (but not limited to)
underlying mechanisms, but we are not completely igno-chaotic dynamics. Tidd et al. compared the two ap-
rant. A model representing our state of knowledge there-proaches, based on their ability to forecast data that were
fore would be partially mechanistic but would remainnot used in fitting the models, and concluded that the
flexible and phenomenological about poorly known as-mechanistic approach was superior. However, the phe-
pects of the system (Wood 1994). We therefore believenomenological models in their comparison were all lin-
that the semimechanistic approach will be advantageousear, whereas the analyses based on (1) indicate that the
for modeling the dynamics of many populations and eco-dynamics are nonlinear as well as noisy (see table 1).
systems based on time-series data for a range of purposesOur goals here are twofold. First, we complete the pro-
including forecasting, control, and identifying underlyinggram initiated by Tidd et al. to provide a quantitative ba-
mechanisms. Here, taking measles as a case study, we il-sis for deciding between these alternative characteriza-
lustrate how the semimechanistic approach leads to im-tions of the dynamics, by adding to the comparison
proved forecasting accuracy, improved characterizationphenomenological models representing the hypothesis of
of measles dynamics, and additional information aboutnoisy nonlinear dynamics. These complete the experi-
the underlying causes.mental design of Tidd et al. (1993), making it possible to

reach conclusions about the contrast of main interest
(mechanistic vs. phenomenological; table 1). Models

Second, we present and evaluate an intermediate class
Mechanistic

of models that we call semimechanistic. The goal of this
approach is to obtain more precise estimates by making The mechanistic model we consider is the seasonally

forced basic SEIR model (defined below). We chose thisuse of reliable biological information, while using non-
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model because it was found to give the highest forecast- The contact rate equation in (2), namely b(t)SI, is the
conventional mass-action equation, which is also used,ing accuracy by Tidd et al. (1993), and it is the prototype

for most of the more detailed measles models. A more for example, in the Lotka-Volterra predator-prey model
and in host-parasitoid models in continuous time.complex model (e.g., the Realistic Age Structure [RAS]

model; Schenzle 1984; Bolker and Grenfell 1993; Keeling
and Grenfell 1997) need not give more accurate forecasts

Phenomenologicalbecause of the difficulty of estimating accurately the
larger number of parameters. We considered two very different phenomenological non-

The SEIR model is a system of nonlinear differential linear time-series models, feed-forward neural networks
equations that describes the changes over time in the (FNN) and the seminonparametric (SNP) model of Gal-
fraction of Susceptible, Exposed (latent), Infective, and lant and Tauchen (1992). Given the amount of data
Recovered individuals in the population. In the case of available on measles, our past experience and compara-
measles the basic model takes the form tive studies favor FNN for characterizing nonlinear pop-

ulation dynamics (McCaffrey et al. 1992; Ellner and Tur-dS/dt 5 m(1 2 S) 2 b(t)SI ;
chin 1995). The seminonparametric model is a recently

dE/dt 5 b(t)SI 2 (m 1 a)E ; proposed model, very different in form from FNN, which
has been successful on economic data sets where lineardI/dt 5 aE 2 (m 1 g)I ; (2a)
models have proved inadequate.

and The neural network model is equation (1) with

dR/t 5 gI 2 mR , f(x1, x2, . . . , xd, t)

where m is the mortality rate (assumed to be the same
5 β0 1 ^

k

i51

β i G1^
d

j51

γ ij xj 1 γ i, d11 cos(2πt) (3)for all classes), b(t) is the contact intensity, and 1/a and
1/g are the mean durations of the exposed and infectious
periods. The differential equations in (2a) correspond to

1 γ i, d12 sin(2πt) 1 µ i2 ,
the compartment diagram shown in figure 1. This form
of the model assumes that all newborns are susceptible,
recovered individuals have permanent immunity (which where G is a sigmoid function such as G(u) 5 exp(u)/(1

1 exp(u)). In the original interpretation of (3) as a neu-is appropriate for measles), and population size is con-
stant. Contact intensity, b(t), is assumed to follow a de- ral model, each term in parentheses on the right-hand

side of (3) represents the stimuli to a single neuron, andterministic annual cycle caused by seasonality and the
school year. Conventionally, b(t) is modeled by a sine G( ) is the resulting firing rate of that neuron. However,

equation (3) was used here strictly as a statistical model,wave, but we used the more realistic form introduced by
Kot et al. (1988): with each x on the right-hand side being the log-trans-

formed case report total from a past month. The cos and
b(t) 5 β0(1 1 β1ϕ(t)), ϕ(t)

(2b) sin terms allow the model to include periodic variation
in the contact rate intensity with period 1 yr; models5 1.5(0.68 1 cos(2πt))/(1.5 1 cos(2πt)) .
omitting these seasonal covariates performed far less well.
Software is available for fitting this model and for com-
puting confidence intervals using methods developed
elsewhere (Bailey et al. 1997), as part of the FUNFITS
nonparametric regression package (Nychka et al. 1996).

The SNP model uses a series expansion to approxi-
mate the full one-step-ahead probability density of the

Figure 1: Compartment diagram of the SEIR model, for mea- time series conditional on past values, so it does not have
sles, corresponding to equation (2) in the text. The four com- the form of equation (1). The leading term is a linear
partments are the fractions of Susceptible, Exposed (latent), In- autoregression with Gaussian noise. Higher-order terms
fective, and Recovered individuals in the population, hence S 1

result from polynomials multiplying the leading term’s
E 1 I 1 R 5 1. All newborns are assumed to enter the suscep-

density and modifying its shape, in which the coefficientstible class eventually (either at birth or after a time delay), and
are themselves polynomial functions of current and pastrecovery is permanent. In the form of the model used here and
system states. A complete description of this model isby Tidd et al. (1993), the total population size is assumed to be
given elsewhere (Gallant and Tauchen 1992). Seasonalityconstant, hence the recruitment rate (m) equals the total death

rate. was incorporated into the SNP model by including times
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t 2 12 mo and t 2 24 mo in the vector of past values (4) to data: the neural network model (3), which we call
the SC FNN model (SC for susceptibles and cases), andused in making predictions at time t (see eq. [1]). Model

fitting software for SNP is available on request from a kernel regression model (Härdle 1990; Cheng and Tong
1992), SC kernel. A brief description of kernel regressionA. R. Gallant.
is given in appendix A. Kernel regression models can be
fitted orders of magnitude faster than neural networkSemimechanistic
models. Kernel regression was therefore used when esti-

The semimechanistic model was designed to incorporate mating forecasting accuracy by cross validation (see app.
the known compartmental structure of disease transmis- A), which requires repeatedly refitting the model to dif-
sion embodied by figure 1, without specifying the form ferent data sets. Cross validation on data sets of the size
of the contact rate equation that gives the rate at which analyzed here is computationally infeasible at present for
new cases arise. For convenience in fitting to monthly the neural network model.
case report data, the model was formulated in discrete
time:

Methods for Evaluating the Models
St11 5 St 2 Ct11 1 rt11 ,

Our comparisons of alternative models are based on their
and (4)

forecasting accuracies when applied to data not used in
xt11 5 g(St, xt) 1 et . fitting the model, exactly as in Tidd et al. (1993). The

data were monthly case report totals for measles in fiveHere Ct and xt are case totals for month t (untrans-
large cities (fig. 2). Forecasts forward from each time tformed and log-transformed, respectively), St is an esti-
are based on a vector of log-transformed past values, Xtmate of the number of susceptibles at the end of month
5 (xt, xt2L, . . . , xt2mL), and on time of year (t) to ac-t, rt is the total net recruitment into the susceptible pop-
count for the strong seasonal variation in contact rate.ulation in month t, and et is random error.
Log-transformation was necessary to stabilize variances.The first line in (4) has exactly the same interpretation
Details of the methods for fitting the models, selecting anas the first line in (2). Both are mass-balance equations
optimal state vector Xt, and generating the forecasts arefor the number of susceptibles, accounting for the net ef-
given in appendixes B and C.fect of individuals recruiting into the susceptible class

For each time t and for prediction intervals Tp 5 1–24and of individuals leaving the susceptible class when they
mo ahead, each model M was used to produce a forecastcatch the disease. To be exact, the first line of (4) really
x̂M

t1Tp
of xt1Tp, which was the conditional mean of xt1Tpshould read St11 5 St 2 Et11 1 rt11, where Et is the num-

given Xt in that model. Only the first half of each databer of individuals catching the disease in month t. How-
series was used in fitting the models, and predictionsever, because the latent period for measles (roughly 1
were made only for the second half of each data series.wk) is short compared with the sampling interval (1 mo),
Prediction accuracy was measured by prediction r 2,we can assume that Ct 8 Et and thereby avoid using Et
which is computed by the usual formula for r 2 in a re-as an additional state variable (Bobashev 1997; G. Boba-
gression analysis: 1 2 (mean square error)/(variance ofshev, S. Ellner, D. W. Nychka, and B. T. Grenfell, un-
data). In this nonregression case, r 2 may be negative ifpublished manuscript). We initially allowed additional
the model’s forecasts are highly inaccurate. A negativelags, replacing the second line with xt11 5 g(St, xt, xt2L,
prediction r 2 means that model-based predictions are lessxt22L, ⋅ ⋅ ⋅) 1 et, but these models performed less well
effective than simply taking the unconditional meanthan (4).
value as the prediction would be.The main substantive difference between (2) and (4) is

As a baseline for evaluating the performance of thesethat the number of new cases is not assumed to follow
models, we used a prediction method that uses only thea particular parametric rate equation (b(t)SI in the SEIR
average trend over the year: the forecast for time k ismodel) but is fitted by a phenomenological regression
simply the mean of all values from the same month inmodel g. Otherwise the models are functionally equiva-
the first half of the data series. We refer to this as the an-lent and operate at the same level of detail (e.g., both
nual trend forecast.ignore age and spatial structure within the popula-

tion). However, the fitted rate equation in (4), because
it can take any functional form mandated by the data, Results
can in principle reflect the net effect of processes and

Comparisons of Forecasting Accuracy
heterogeneities that are not explicitly included in the
model. Forecasts based on SEIR were slightly less accurate over-

all than forecasts based on the phenomenological time-We used two different forms for g in fitting equation
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FNN on average (mean prediction r 2 5 0.61 for
SC FNN, 0.53 for FNN) and in 71% of the (city 3 pre-
diction interval) combinations: the semimechanistic
model ‘‘beats’’ the purely phenomenological model. Both
SNP and SEIR had lower average prediction r 2 than ei-
ther of the neural-net based models (mean prediction r 2

5 0.52 for SNP, 0.32 for SEIR), supporting our earlier
conclusions that neural network regression is well suited
for population time series with larger sample sizes.

Forecasting based on SEIR has been reported to be
more successful at ‘‘peak-to-peak’’ prediction, in which
the next outbreak maximum is predicted based on the
most recent outbreak maximum and intermediate
months are ignored (Tidd et al. 1993; Kendall et al.
1994). We therefore compared the peak-to-peak predic-
tion accuracies of the SEIR and SC FNN models. Fore-
casts were generated by tabulating the time series of out-
break maxima in long simulations of the model and
using nonlinear regression (function smooth.spline in S-
plus, Chambers and Hastie 1992; StatSci 1995) to esti-
mate the relationship between successive maxima. The
semimechanistic SC FNN model gave consistently more
accurate forecasts than SEIR did (table 2). In contrastFigure 2: The data used to evaluate forecasting accuracy: mea-
with SEIR, the peak-to-peak forecasts from SC FNNsles monthly case report totals for New York City, Baltimore
were less accurate than the 1-yr-ahead forecasts discussedcounty, Detroit, Milwaukee, and London. New York City data
above that were obtained by iterating forward 1 mo at aare from London and Yorke (1973), London data are from the

Registrar General’s Weekly Report; Baltimore, Detroit, and Mil- time.
waukee compiled and provided by William M. Schaffer. The

Using the Fitted Modeltime span for each series was chosen to terminate before vacci-
nation (which began in the 1960s) had any evident effect and

The comparison of forecasting accuracy indicates that the
to avoid any obvious causes of nonstationarity. The data for

semimechanistic model SC FNN provides the best de-London therefore do not include the years of the Second World
scription of the dynamics. The effort of constructing andWar, during which many children were evacuated. For U.S.
fitting this model is repaid by information that it pro-cities those years are included; virtually all cases occur before
vides about the dynamics. In this section we presentthe age of 15, so the absence of those old enough for military

service would not greatly affect disease transmission. three such examples. First, the form of the fitted model
may suggest underlying mechanisms, or narrow the

series models representing the ‘‘noisy nonlinearity’’ hy- range of possible mechanisms, so that the semimechanis-
pothesis, namely, the SNP model, and the FNN model tic model is a step toward obtaining an improved mecha-
(fig. 3). Seminonparametric (SNP) forecasts were mark- nistic model. Second, the fitted model can be used to
edly better than SEIR for London and Milwaukee and characterize the significant features of the dynamics.
nearly identical to SEIR in prediction accuracy for the Some such features of interest for population and epi-
other cities. Feed-forward neural networks forecasts demic dynamics are the overall extent of chaos versus
(FNN) were markedly better than SEIR for Milwaukee stability, the level of predictability versus unpredictable
but were only slightly better on average than SEIR for the ‘‘noise’’ in the dynamics, and how both of these vary as
other four cities. a function of the system’s current state. Finally, the fitted

The semimechanistic SC FNN model was better over- model can be used to evaluate a proposed mechanistic
all than SEIR in each of the cities (fig. 4) and had a model, or compare alternative proposed models, by fit-
higher prediction r 2 than SEIR in 89% of the (city 3 pre- ting the same model to output from the mechanistic
diction interval) combinations examined. Comparing all model and comparing with the model fitted to the data.
four models, the highest average prediction r 2 was
achieved by SC FNN in three cities (New York, Detroit, Improving the Mechanistic Model. There are only two

mechanistic differences between the SC FNN and SEIRMilwaukee), FNN in one city (Baltimore), and SNP in
one city (London). The SC FNN model outperformed models: the former has a general contact rate equation



Figure 3: Comparison of prediction accuracy between the mechanistic SEIR model and the phenomenological SNP and FNN mod-
els, for model-based forecasts 1–24 mo ahead. Forecasts were made for the second half of the data series for each city, with only
the first half of the data series used for fitting the models. Forecasting accuracy was measured by prediction r 2, the proportion of
variance accounted for by the fitted model. Methods for fitting the models, and generating the forecasts, are described in appen-
dixes B and C, respectively. The annual trend forecast (solid line) is the mean of all values from the same month in the first half
of the data series.

Figure 4: Comparison of prediction accuracy between the mechanistic SEIR model and the semimechanistic SC FNN model for
model-based forecasts 1–24 mo ahead. The curve for the SEIR-based forecasts is the same as that in figure 3. Methods are as
described in the text and figure 3 legend.
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Table 2: Prediction r 2 for peak-to-peak prediction by the SEIR model and the
semimechanistic neural net model SC FNN

New York Baltimore Detroit Milwaukee London

SC FNN .51 .43 .47 2.11 2.05
SEIR .43 .17 .19 2.76 2.09

Note: See text for definition and description of SC FNN and SEIR.

instead of assuming a priori the mass-action equation 1997) examined the adequacy of this form for the contact
rate, using weekly case report data on six large cities inb(t)SI, and it also takes into account nonconstant re-

cruitment rates. The better performance by SC FNN Britain. Nonparametric (spline) estimates of b(t) and f(I)
were obtained for each city (see Bobashev 1997 for de-suggests that an improved mechanistic model could be

obtained by adding one or both of these features to the tails of the methods), and this nonparametric model gave
a statistically better fit to the data than the mass-actionSEIR model. It is easy enough to modify the SEIR model

(2) so that the recruitment rate is nonconstant. Modi- equation (based on F-tests for significance of the added
degrees of freedom). The parametric form f(I) 5 I 1 I0,fying the contact rate equation is less straightforward, be-

cause the fitted rate equation in SC FNN has no mecha- I0 a small positive constant, was found to describe the
data at low values of I typical of the troughs between epi-nistic meaning. We need to replace it with a simple

functional form whose parameters can be interpreted in demics. Presumable I0 represents cases arising due to
contact with infectives who live in other cities and areterms of underlying processes, without sacrificing accu-

racy. counted as cases in their home city. At high values of I
there is some saturation in the number of additionalSimply plotting the fitted rate equations provides some

information about the contact rate (fig. 5). For any cases per additional infective (Bobashev 1997; this is also
visible in fig. 5). Possible mechanistic explanations formonth, the fitted equation is a response surface giving

the expected number of new cases as a function of the the saturation include spatial clustering of infectives, that
is, when there are many infectives, most susceptibles arecurrent number of cases and susceptibles. If the contact

rate followed the mass-action equation b(t)SI, then on in areas where infectives happen to be rare (see Rhodes
and Anderson 1996 for how this can affect the dynamics)log-scale the fitted surfaces should approximate the plane

log(C(t 1 1)) 5 A0 1 A1 log(C(t)) 1 A2 log(S(t)), with and heterogeneity of susceptibility (more-susceptible in-
dividuals are infected early, so as the epidemic grows theA1 5 A2 5 1. The surface’s nonlinearity should be weak,

resulting only from the data being discrete-time running transmission rate decreases). Each of these could be eval-
uated by constructing a model incorporating the mecha-averages from the underlying continuous-time process.

Thus when our fitting procedure is applied to output nism and seeing if the contact rate surface estimated
from model output matches those derived from the data.from the SEIR model, the estimated surface is very close

to linear and the least-squares approximating plane has However, this level of mechanistic understanding is not
necessary for creating a more accurate model at the sameslopes A0 5 0.98, A1 5 0.96. (These values are for the

January surface shown in fig. 5; results for all other level of detail as the SEIR equations; all we need is the
more accurate contact rate equation estimated from themonths are nearly identical.) The estimated surfaces in

figure 5 appear to be linear or nearly so in log S(t) but data.
are markedly nonlinear in log C(t).

In contrast, the fitted seasonal periodicity is quite close Stability versus Chaos, and Local Chaos. Stability versus
chaos can be quantified by the dominant Lyapunov ex-to that in the SEIR model (eq. [2b]). Our model does

not have an explicit seasonality term, but the seasonal de- ponent λ. The Lyapunov exponent gives the long-term
sensitivity to initial conditions, that is, the rate of growthpendence can be extracted by plotting log(predicted cases

at time t 1 1) as a function of time t, with the current C (or decay) over time of the effect of a small perturbation
in the system’s state. Thus λ . 0 indicates sensitive de-and S held constant. The resulting plots are very similar

to equation (2b), the only consistent difference being a pendence on initial conditions, which is the classical de-
fining feature of chaotic dynamics. The mathematicalslightly broader trough of lowered transmission over the

summer. definition of λ for systems with random perturbations,
and methods for estimating λ in such cases, are reviewedThese results suggest a contact rate of the form

b(t)Sf(I), where f is nonlinear. Another study (Bobashev elsewhere (Ellner and Turchin 1995).
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Figure 5: Plots of the fitted rate equations in the SC FNN model, showing on logarithmic scale the number of new cases, C(t 1 1),
as a function of the current number of cases, C(t), and number of susceptibles S(t). The model generates different surfaces for
each month. Those shown are for January, but those for other months are qualitatively similar. For comparison, the bottom right
panel shows the plot obtained by applying exactly the same fitting and plotting procedures to a times series of cases generated by
the SEIR model with mass-action contact rate βSI; the relatively weak nonlinearity in this surface results from the fitted model
being in discrete rather than continuous time. The difference in scales for logC(t) versus logS(t) produces the visual impression
that the contact rate is insensitive to changes in S(t); in fact, for the least-squares approximating plane to the SEIR model surface,
the slopes in logC(t) and logS(t) are nearly identical.

To estimate λ, we refitted the SC FNN model using zero. Estimates from the semimechanistic model were far
less variable (over cities) than those obtained in an earlierthe entire data series but retaining the model specifica-

tion that gave the best prediction r 2. The estimates of λ study (Ellner et al. 1995) with the phenomenological
FNN model (fig. 7). This supports Tidd et al.’s (1993)are shown in figure 6 (top panel), with 95% confidence

intervals obtained by methods developed in another pa- criticism of phenomenological models: by ignoring bio-
logical information they needlessly sacrifice precision.per (Bailey et al. 1997). These estimates support our pre-

vious conclusion (Ellner et al. 1995) that measles epi- Because the dynamics are neither strongly stable nor
strongly chaotic, global measures such as λ are less infor-demic dynamics are clustered near the transition between

stable and chaotic dynamics (λ < 0). They are neither mative than short-term measures that characterize the
‘‘local’’ dynamics in different regions of state space (Yaostrongly stable nor strongly chaotic, and for three of the

five cities, the 95% confidence interval for λ contains and Tong 1995). Local chaos versus stability can be char-
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Figure 7: Histograms of estimated global Lyapunov exponents
for measles epidemics in 12 cities, those shown in figure 2 plus
Copenhagen, Bristol, Liverpool, Manchester, Newcastle, Bir-
mingham, and Sheffield. Upper panel shows estimates obtained
from the phenomenological time-series model (eq. [1]), taken
from an earlier study (Ellner et al. 1995). Lower panel shows
estimates obtained from the semimechanistic SC FNN modelFigure 6: Estimates of global and local Lyapunov exponents for
(eq. [4]). Note the tenfold difference in horizontal scale be-each of the cities. Estimated values are indicated by the solid
tween the panels.box, and the error bars show 95% confidence intervals com-

puted by those described elsewhere (Bailey et al. 1997). The top
tenth and ninetieth percentiles of the distribution) is farpanel shows the estimated global Lyapunov exponent λ, with
larger than the variation between cities in the global ex-the dashed line at 0 indicating the boundary between stable (λ
ponent. Thus in all cases, the near-zero global Lyapunov, 0) and chaotic (λ . 0) dynamics. The two lower panels refer

to the local Lyapunov exponents λm(t) for m 5 12 mo ahead, exponent λ results from an alternation between short-
which gives the short-term rate of growth (λm(t) . 0) or de- term sensitive and insensitive dependence on initial con-
crease (λm(t) , 0) in the effect of a perturbation at time t. The ditions.
middle panel shows 95% confidence intervals for the fraction of So is measles chaotic? Yes, and no. Alternating be-
λm(t) values that are positive; the bottom shows 95% confi- tween local stability and local chaos causes the dynamics
dence intervals for the tenth and ninetieth percentiles of the to look and act chaotic much of the time, even if strictly
distribution of λm(t) over the course of the data series.

speaking they are not. This kind of behavior is not the
same as noise-induced chaos (Rand and Wilson 1991), in
which random perturbations cause the system to be gen-
uinely chaotic in the strict sense. Nonetheless, during theacterized by the local Lyapunov exponents, denoted λm(t)

(e.g., Abarbanel et al. 1991, 1992; Wolff 1992; Bailey periods of local chaos, the system has strong short-term
sensitivity to any perturbations it receives, exactly as in a1996). The exponent λm(t) is the short-term rate of

growth (λm(t) . 0) or decrease (λm(t) , 0) in the effect truly chaotic system. Small causes ‘‘now’’ have larger ef-
fects ‘‘a bit later,’’ even though much later the effects areof a perturbation at time t, over the time interval from t

to (t 1 m). If the system is deterministic, λm(t) depends damped out during the periods of local stability. This
kind of quasi-chaotic behavior has received little atten-only on the system state at time t; in noisy systems it is

a random quantity that depends on the system trajectory tion in the literature on deterministic chaos because
without continual random perturbations it is only thebetween times t and (t 1 m).

In each of the cities, there was substantial variation in long-term insensitivity to perturbations that matters.
With random perturbations, every time the system entersthe local Lyapunov exponents over the course of epidem-

ics, including a roughly 50:50 split between positive and a region of local chaos, the potentially erratic behavior
gets kicked into action immediately. Local chaos is there-negative values (fig. 6). The variation in local exponents

within each city (as indicated by the gap between the fore the more relevant property for systems subject to re-
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current random perturbations, and it appears to be the after they actually occur, this would smooth out the data
and increase the apparent predictability. Milwaukee isrule in measles epidemics.
clearly identified as an ‘‘outlier,’’ with predictability fall-
ing off far more rapidly than the model predicts. TheEvaluating Mechanistic Models: Unpredictability as a

Probe. The prediction errors of the fitted semimechanistic major outbreaks in 1938 and 1945 (see fig. 1) are the
likely culprits. In those instances, 2 yr of small outbreaksmodel are due in part to the intrinsic unpredictability of

the dynamics, but errors are also produced by other fac- were followed by an especially large outbreak, whereas
previously that had not been true. On the whole, the re-tors, such as limited sample size and reporting error.

Nonetheless, we can use prediction accuracy as a ‘‘probe’’ sults in figure 8 indicate that the unpredictability in the
data can be accounted for by demographic stochasticityinto the adequacy of a proposed mechanistic model. We

do this by comparing the apparent unpredictability of the interacting with nonlinear dynamics (in particular, the
‘‘noise amplification’’ [Deissler and Farmer 1992] thatreal data with that of equally long simulated data sets

from the proposed model that are also contaminated by occurs during periods of short-term chaos). This accords
with the conclusions stated above based on the semi-(simulated) reporting errors.

As a simple example, we consider the SEIR model (eq. mechanistic model.
[2]) implemented as a finite-population simulation. The
finite-population model treats the right-hand sides of the

Discussion
differential equation as specifying stochastic transition
rates between the compartments shown in figure 1. The The main biological implication of our analyses is that

measles epidemics are best described as a mixture ofmodel was implemented by using a 2-h time step and
Poisson-distributed transitions with mean given by tran- nonlinearity and noise, with neither component being

small enough to disregard. The dynamics are not essen-sition rate 3 time step. A small rate of immigration by
infectives was added to keep the disease from fading out tially deterministic, nor are they just random measure-

ment errors masking a simple seasonal trend. Epidemicscompletely by chance. The immigration rate was adjusted
up from zero until the lower tail of the distribution of are likely to be perturbed by both environmental vari-

ability and demographic stochasticity (Bartlett 1957;monthly case totals roughly matched that for New York
City, corrected for underreporting. A natural model of Grenfell et al. 1995c). The biological details omitted from

our models, such as age structure and spatial heterogene-the reporting process is independent random sampling,
with each case having a probability P , 1 of being re- ity, may also contribute to forecasting errors. However,

the observed levels of predictability are quite high for atported. However, a better fit to the power spectrum of
the data is obtained by assuming that cases are noninde- least 6 mo into the future. Moreover, the levels of unpre-

dictability are reasonably well matched by a model inpendent and, in particular, that they are reported in clus-
ters of size 2 or 3 (Ellner et al. 1995). Here we used a which the only stochastic forces are demographic sto-

chasticity and random reporting errors, both of whichcluster size of 2 and reporting probability P chosen so
that the mean number of cases in the simulation are undoubtedly present in reality.

The estimates of the local and global Lyapunov expo-matched that in the data. Prediction r 2 was computed for
the real time series and for model output, in both cases nents (figs. 6 and 7) indicate that the epidemic dynamics

are clustered very near the border between stable (λ , 0)by fitting the semimechanistic model to the time series of
monthly case totals. The contact rate (g in eq. [4]) was and unstable (λ . 0) dynamics, but there are large fluc-

tuations in the degree of short-term chaos versus stabilityestimated by kernel regression because this allows us to
use the entire time series (rather than just the second (i.e., short-term sensitivity vs. insensitivity to initial con-

ditions). These findings imply that interactions betweenhalf) to estimate unpredictability by cross validation (see
the section ‘‘Semimechanistic’’). noise and nonlinearity are a significant aspect of the dy-

namics. During periods of short-term sensitivity to initialThe results (fig. 8) show a good but imperfect match
between model and data—indeed surprisingly good, conditions (λm(t) . 0) the system is acting as a ‘‘noise

amplifier,’’ in which the nonlinear disease transmissiongiven that model parameters were not adjusted to achieve
a close match. However, the 1-mo-ahead predictability of dynamics amplify the effect of demographic stochasticity

and/or exogenous random shocks. During these periods,the data was consistently higher than that of the simula-
tion model (five of six cities). Given that the model omits much of the unpredictability is generated by endogenous

nonlinearity, as in a chaotic system. When λm(t) , 0,numerous complexities of the real disease, this discrep-
ancy is more likely due to the reporting process than to there is insensitivity to initial conditions, as in a stable

system with random perturbations. Characterizing thisthe real world being less stochastic than the model. For
example, if a fraction of cases are reported in the month kind of dynamics as chaotic (if λ . 0) or nonchaotic (if
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Figure 8: Comparison of apparent unpredictability of the data with that of output from the finite-population SEIR model with
simulated reporting errors. Unpredictability is 1 2 r 2 for the semimechanistic model with kernel regression estimate of the contact
rate (see text for details); this can be interpreted as the proportion of variance unexplained by the model. Solid lines are the unpre-
dictability’s for the data; dashed lines are the mean 62 standard errors, from 25 simulated data sets equal in length to the real
data. Total population size for the simulations was 5 million for New York (NYC), 2 million for London, and 1 million for the
others.

λ , 0) might be correct, but it would be incomplete and A linear model is not a fair ‘‘straw man’’ because it is far
from the best phenomenological model available. A non-misleading. The complexity of the dynamics is not simply

‘‘noise,’’ nor is it chaos in the classical sense but, rather, linear autoregressive model such as a neural net model or
a completely nonparametric model such as SNP wouldis a result of the interaction between noise and local non-

linearities. Similar qualitative behavior has been discov- be more appropriate benchmarks.
The most accurate description of the dynamics, asered recently in several other cyclic populations: pacific

Dungeness crabs (Higgins et al. 1997) and Fennoscan- measured by out-of-sample forecasting accuracy, was ob-
tained with a semimechanistic model that retains thedian voles (P. Turchin and S. P. Ellner, unpublished

manuscript). compartmental structure of the SEIR model but uses the
data to estimate the form of some rate equations. TheOur results also have more general implications for the

study of dynamics in other ecological and epidemiologi- main difference between the SEIR and semimechanistic
models is that the former uses the conventional ‘‘strongcal systems. Our results support Tidd et al.’s (1993) argu-

ment that analyses based on phenomenological time- homogeneous mixing’’ contact rate equation (Anderson
and May 1991), in which the infection rate is propor-series models omit useful information and therefore

sacrifice precision needlessly. However, contrary to Tidd tional to the product of the number of susceptibles and
the number of infectives. The SEIR and semimechanisticet al., our results do not support analyses based on a sim-

ple mechanistic model such as SEIR. The main flaw in models operate at exactly the same level of detail—city-
wide monthly case totals. Thus the difference in perfor-the Tidd et al. study was the use of linear models as the

benchmark for comparison with the mechanistic model. mance is not simply a matter of one model incorporating
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more detail but indicates that the conventional contact blowfly Lucilia sericata (R. Smith, unpublished data); de-
tails of this analysis will appear elsewhere. The data wererate equation may be incorrect, which might explain

some of the persistent discrepancies between the data 200 every-other-day samples of larvae, pupae, and total
adults (mature plus immature), with three replicates atand SEIR-type models (Bolker and Grenfell 1993). Alter-

natively, the greater flexibility of the semimechanistic each of two initial age distributions. Experimental data
(Daniels et al. 1991; Simkiss et al. 1993) were available tomodel may allow it to capture the main effects of some

biological ‘‘details’’ that are omitted from both models parameterize all rate equations for a mechanistic stage-
structured model (similar to Gurney et al. 1983). Thisbut can have significant effects on the dynamics: age

structure (Schenzle 1984; Anderson and May 1991; mechanistic model exhibited the strong periodicity ob-
served in the data but with the wrong period unless allBolker and Grenfell 1993), changes in the clustering of

infectives (Rhodes and Anderson 1996), and variation in noise in the model was turned off completely, including
demographic stochasticity. The phenomenological modelsusceptibility among individuals. Thus we cannot infer

that the semimechanistic model is ‘‘correct,’’ simply that was equation (1) fitted to the total number of adults; the
output from this model was noncyclic. The semimecha-it does the best job (so far) of capturing the dynamic

structure present in the available time-series data. It is nistic model adopted the stage structure from the mecha-
nistic model (eggs, larvae, pupae, immature, and maturealso not yet clear to what extent the dynamics are influ-

enced by external demographic factors such as secular adults) but estimated all transition rates from the time
series using an estimate of the (unobserved) number oftrends in birth rates (Grenfell et al. 1995a, 1995b, 1995c).

Of the models considered here, only the semimechanistic mature adults. This model cycled with the correct period
and roughly correct amplitudes. Moreover, it successfullymodel allows for variation in birth rates.

This case study has exploited the length and accuracy predicted the qualitative changes in dynamics observed in
a second experiment where the pupal mortality wasof epidemic data and our knowledge of underlying epide-

miological processes and parameter values. Can a semi- higher due to a low dose of cadmium in the larval diet.
The difference between the semimechanistic and mecha-mechanistic approach be useful in practice, even with

poorer data or less knowledge? Several case studies sug- nistic models was informative about underlying mecha-
nisms. The former omitted as nonsignificant one of thegest that the answer is sometimes yes. One such study

(Ellner et al. 1997) considered the problem of estimating regulating mechanisms observed in the independent ex-
periments, a strong effect of larval crowding on the sub-differential delay equations of the sort that arise from

age- or stage-structured population models in continu- sequent size and fecundity of those individuals as adults.
Thus the density-dependent variation in adult size wasous time (see, e.g., Gurney et al. 1983; McCauley et al.

1996 and references therein). The simplest example of apparently not a significant regulating factor in the ob-
served population cycles.such models is

The polar alternatives of fitting simple mechanistic
models, and purely descriptive statistical models, havedx

dt
5 f(x(t 2 τ)) 1 g(x(t)).

been the dominant approaches for modeling and quanti-
fying population fluctuations. While it is recognized that
both approaches have limitations, both are widely used.This can be interpreted as a delayed-recruitment model,

with x(t) the number of adults at time t, τ the matura- Our results suggest that a combination of mechanistic
and statistical population modeling, reflecting the actualtion time, and the f( ) and g( ) terms representing re-

cruitment into the adult class and deaths of adults, re- state of knowledge about the system, can be useful in
practice for improved forecasting and characterization ofspectively. We assumed that the form of the equation was

known (this is the mechanistic information analogous to population dynamics. Moreover, the fitted model can
provide information on the mechanisms driving the ob-eq. [4] above), but that τ, f, and g had to be estimated

from a single time series of x(t) values. As few as 100 served dynamics. By applying this approach to measles,
we have obtained a resolution to the longstanding debatedata points were sufficient to determine the general shape

of both f and g and to estimate the maturation time τ on whether the dynamics are noise or chaos; we have
presented quantitative evidence that our analysis is basedvery accurately, even if the sampling frequency was so

low that x(t) and x(t 2 τ) are never observed simulta- on models with superior average performance to those
used previously, across a range of representative data sets;neously (e.g., if τ 5 17 d and samples are taken every

3 d). and we have uncovered evidence for consistent depar-
tures from the conventional mass-action equation of dis-One of us recently compared (S. P. Ellner, unpub-

lished data) phenomenological, mechanistic, and semi- ease transmission that can be incorporated into improved
mechanistic models.mechanistic models for laboratory populations of the
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APPENDIX A
tended 24 mo on either side of the time for which pre-
dictions were made. A window of that size is necessary toKernel Regression
avoid spurious results arising from the strong temporal

Consider a data set {(Xi, yi), i 5 1 ⋅ ⋅ ⋅ n}, where the X ’s
autocorrelations in the data (Grenfell et al. 1995a).

are observations of the independent variables and the y’s
are the corresponding observations of a single dependent
variable. Kernel regression is a general nonparametric re-

APPENDIX B
gression method based on local weighted averaging of the

Fitting the Modelsdata, which provides a consistent estimate of the condi-
tional mean of y given X (Härdle 1990; Cheng and Tong

The SNP, FNN, and SC FNN models were fitted for a
1992). In this article, the X ’s are values of the system state

prediction time of 1 mo ahead. For FNN and SC FNN,
variables—current and lagged case totals, susceptibles,

the parameters (β i, γ ij, µ i) were estimated by nonlinear
and/or seasonal covariates—and the y’s are the number

least squares for each given value of k, and the value of k
of cases at a future time. The fitted kernel regression

was chosen by the Bayes Information Criterion (BIC),
model thus provides forecasts of future cases. The degree

using methods described elsewhere (Ellner et al. 1992;
of predictability in the data can then be estimated from

Nychka et al. 1992). After some trial-and-error using
the residuals, much as the residual mean square can be

only the first half of each data series, the SNP model was
used to estimate the error variance in linear regression.

constrained to use 24 past monthly values in the linear
The predicted y value for any X (which need not be

autoregression but only the four most recent values in
one of the data values) is a weighted average of the yi in

the polynomials. Methods used to estimate parameter
which most weight is given to those with Xi near X; the

values and select the polynomial order for SNP are de-
general formula for a kernel regression model is

scribed elsewhere (Gallant and Tauchen 1992).
In kernel regression the only fitted parameter is the

ŷ 5
î

wi(X)yi@
î

wi(X) , (A1) bandwidth. In all kernel regression fits we selected
the bandwidth by cross validation as described in ap-
pendix A.where ŷ is the predicted value of y (i.e., the conditional

mean of y given X). The weights wi are given by k(di/h), For SEIR, we initially followed Tidd et al. (1993) and
implemented the model as a finite-population Montewhere di is the distance from X to Xi, k is a weighting

function (the ‘‘kernel’’) that falls off with distance, and h Carlo simulation, with a small amount of immigration
(as in Kendall et al. 1994) to prevent an unrealistically(called the bandwidth) is a constant that controls the rate

at which more distant points are down-weighted. We high number of months with zero cases. However, we
found that substantially more accurate forecasts were ob-used k(d) 5 1/(1 1 d 1 0.5d 4 1 0.3d 6), which falls off

roughly as exp(2d 2) but is faster to compute. tained using the differential equations (2). We used the
values of m, a, and g (which can be estimated directly)The bandwidth h was chosen by cross validation to

minimize the mean square prediction error. Cross valida- and of β0 from Tidd et al. For each data series we com-
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puted forecasting accuracy for β1 5 0.20, 0.22, 0.24, 0.26, ated a 200-yr-long series of simulated case totals, which
were then log-transformed and scaled in the same way asand 0.28, which spans the range of empirical estimates

and runs from simple periodic dynamics to chaos. Fore- the real data, and converted into an ‘‘atlas’’ of simulated
state vectors {XS

t , t 5 0, 1, ⋅ ⋅ ⋅}. A kernel regressioncasting accuracy was improved, especially at lower values
of β1, by adding small random variations about the sea- model was then fitted to these simulated data with band-

width chosen by cross validation (app. A). Predictionssonal trend in contact rate intensity, b(t) 5 β0(1 1
β1 ϕ(t) 1 σz(t)), where z(t) was a first-order Gaussian are then obtained directly from equation (A1), with the

‘‘data’’ (Xi, yi) being output from the simulation model,autoregressive process with unit variance and autocorre-
lation of 0.5 at time lag of 2 wk. For each value of β1 the and X being the point in the real data for which a predic-

tion is being made. Spot-checks with longer atlas lengthsvalue of σ was increased from 0 in increments of 0.01
until the model dynamics were qualitatively similar to (up to 500 yr) indicated that only minuscule improve-

ments result from an atlas longer than 200 yr.the data (i.e., a mix of 2-yr-periodic, 3-periodic, and ape-
riodic dynamics). These values of σ are thus the minimal The forecasting accuracy of each method depends on

the choice of embedding parameters in the state vector,modification of the deterministic model necessary to
generate realistic simulations. The largest value of σ was namely, the time delay L, and the number of lags D 5 m

1 1 (see eq. [1]). Tidd et al. (1993) used L 5 1 mo and0.03 at β1 5 0.20. For each of the five cities, we report
results only for the value of β1 that gave the highest aver- D 5 4 or 6, but Grenfell et al. (1994) found that L 5 4

greatly improved the forecasting accuracy on measlesage forecasting accuracy for 1–24 mo ahead using em-
bedding parameters L 5 3, D 5 6: β1 5 0.20 for New data for England and Wales. Data self-forecasting accu-

racy (estimated by cross validation; see app. A) was usedYork City and London, β1 5 0.22 for Detroit, β1 5 0.24
for Baltimore, and β1 5 0.26 for Milwaukee. as the criterion for choosing embedding parameters (as

in Sugihara and May 1990), on the principle that goodValues of St and rt for the semimechanistic model
(4) were estimated from case report data using methods embedding parameters for the data should also be good

for an accurate model. For our data sets, L 5 3 or 4 withdescribed elsewhere (Bobashev 1997; G. Bobashev, S. P.
Ellner, D. W. Nychka, and B. T. Grenfell, unpublished D 5 5 or 6 gave much more accurate forecasts. In most

of the cities, forecasts with L 5 3 or 4 were better, andmanuscript). The St estimate differs from the actual
number of susceptibles by an unknown shift of location forecasts with L 5 1 were worse, than forecasts based

solely on the seasonal trend. The highest average fore-and scale; rt differs from actual recruitment by the same
shift of scale, which is approximately equal to the frac- casting accuracy was obtained at L 5 3, D 5 6, which in

fact has been the most popular choice in past studies oftion of cases that are reported. The method guarantees
that the first line of equation (4) is valid. For SC FNN, these data. We therefore report results here using L 5 3,

D 5 6, for the SEIR and data-atlas forecasts; all resultsthe parameters of g were estimated by least squares.
were very similar for any of the better embedding param-
eters (L 5 3 or 4, D 5 5 or 6). For the FNN model, the
six-dimensional state vector consisted of four past valuesAPPENDIX C
plus the two seasonal covariates (sin and cos terms).

Computing Forecasts from the Models
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