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[1] A cloud of nonspherical ice particles may be represented in radiation models by a
collection of spheres, in which the model cloud contains the same total volume of ice and
the same total surface area as the real cloud but not the same number of particles. The
spheres then have the same volume-to-area (V/A) ratio as the nonspherical particle. In
previous work this approach was shown to work well to represent randomly oriented
infinitely long circular cylinders for computation of hemispherical reflectance,
transmittance, and absorptance. In this paper the results have been extended to hexagonal
columns and plates using a geometric optics technique for large particles and finite-
difference-time-domain theory (FDTD) for small particles. The extinction efficiency and
single-scattering coalbedo for these prisms are closely approximated by the values for
equal-V/A spheres across the ultraviolet, visible, and infrared from 0.2 to 25 mm
wavelength. Errors in the asymmetry factor can be significant where ice absorptance is
weak, at visible wavelengths for example. These errors are greatest for prisms with aspect
ratios close to 1. Errors in hemispheric reflectance, absorptance, and transmittance are
calculated for horizontally homogeneous clouds with ice water paths from 0.4 to
200,000 g m�2 and crystal thicknesses of 1 to 400 mm, to cover the range of crystal
sizes and optical depths from polar stratospheric clouds (PSCs) through cirrus clouds to
surface snow. The errors are less than 0.05 over most of these ranges at all wavelengths
but can be larger at visible wavelengths because of the ideal shapes of the prisms. The
method was not tested for, and is not expected to be accurate for, angle-dependent
radiances. INDEX TERMS: 0320 Atmospheric Composition and Structure: Cloud physics and chemistry;

0360 Atmospheric Composition and Structure: Transmission and scattering of radiation; 1863 Hydrology:

Snow and ice (1827); 3359 Meteorology and Atmospheric Dynamics: Radiative processes; 5464 Planetology:

Solid Surface Planets: Remote sensing; KEYWORDS: ice, scattering, equivalent spheres

Citation: Neshyba, S. P, T. C. Grenfell, and S. G. Warren, Representation of a nonspherical ice particle by a collection of

independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates, J. Geophys. Res.,
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1. Introduction

[2] Models to calculate absorption and scattering of light
by ice crystals in clouds and snow commonly represent the
crystals by ‘‘equivalent spheres.’’ This approach allows the
use of Mie theory for the single-scattering computations,
which reduces the computation time considerably. Further-
more, a great variety of particle shapes occur in ice clouds,
and in many cases the exact shapes are unknown, so to
represent these clouds in climate models it is appropriate to
use simpler parameterizations. It is also often convenient, in
the analysis of crystals collected in aircraft experiments in

clouds, to summarize the size and shape distribution by a
single ‘‘effective radius.’’ Remote-sensing methods also
often obtain a single effective radius, raising the question
of how this number relates to the assortment of crystals in
the cloud and how to use the remotely sensed effective radii
in cloud modeling. Equivalent-sphere models provide a link
between the highly simplified representations that arise in
remote-sensing and climate-modeling contexts and the
detailed representations that arise in in situ measurement
and computational contexts.
[3] Three choices of equivalent spheres have been used

[Grenfell and Warren, 1999, Figure 2]. A nonspherical
particle may be represented by a sphere of the same
volume, V, or by a sphere of the same surface area, A,
or by a collection of spheres with the same volume-to-
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surface-area ratio, V/A. For equal-volume and equal-area
equivalent spheres, the number of particles in the model
cloud, ns, is the same as in the real cloud, n, but for equal-
V/A spheres, ns > n (Figures 1 and 2). The model cloud
can conserve any two of the three properties of the real
cloud: total volume of ice, total surface area of particles,
and number of particles. Fu [1996] and Fu et al. [1998]
showed for some specific cases that the equal-V/A pre-
scription was superior to the other two representations. For
weakly absorbing particles the absorption is proportional
to the volume, but the scattering is proportional to the
surface area. It is thus important that the model cloud have
the correct area and the correct volume (or mass) of ice.
Matching the number of particles is apparently much less
important. In fact, a particular advantage of the equal-V/A
representation is that it can be applied unambiguously to a
collection of particles in a terrestrial snowpack, for exam-
ple, where the identity of the individual snow particles is
not always well defined.
[4] In the predecessor to this paper, Grenfell and Warren

[1999, hereinafter referred to as GW99] reviewed the use of
the volume-to-area ratio for both cloud optics and snow
optics and examined the accuracy of the equal-V/A prescrip-
tion, surveying the entire wavelength domain 0.2 to 50 mm
over the entire range of ice crystal radii and ice-water paths
from polar stratospheric clouds to surface snow (1–500 mm;
0.4 to 200,000 g m�2). To cover the entire range of wave-
lengths and sizes, they chose as their nonspherical shape

Figure 1. Equal-V/A spheres corresponding to hexagonal prisms for aspect ratios (� = c/2a) of 0.2, 1,
and 5. All three of these prisms have the same volume-to-area ratio, so the radius of the equivalent
spheres is the same for each. The particles are drawn to scale.

Figure 2. Number of equal-V/A spheres per prism as a
function of aspect ratio. The dashed lines show results of the
asymptotic formulae for thin plates (equation (8b)) and long
columns (equation (7b)). The minimum number of spheres
per particle is 1.65 for � = 0.866.
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randomly oriented, infinitely long circular cylinders because
an exact solution is available for all size parameters.
[5] The equal-V/A spheres did an excellent job of mim-

icking the angular averaged single-scattering and multiple-
scattering properties of clouds of circular cylinders across
the entire wavelength domain and for all cylinder radii and
cloud thicknesses. The errors in hemispheric reflectance and
absorptance were generally 0 to 0.02 and rarely exceeded
0.05. Because of that success, we have now conducted a
similarly comprehensive survey to test the ability of spheres
to represent some ice crystal shapes that do exist in real
clouds: hexagonal columns and plates (e.g., Figure 1 of
GW99).
[6] Hemispheric fluxes are less sensitive to particle shape

than are radiances because radiances are affected by details
of the phase function whereas fluxes are sensitive only to
the low-order moments of the phase function. Phase func-
tions of nonspherical particles may differ dramatically from
those of spheres and yet have the same asymmetry param-
eter (e.g., Figure 5 of GW99). We provide comparisons only
for angularly averaged quantities such as hemispheric
reflectance and transmittance and the single-scattering
quantities required to compute them. So, for example, we
compare the asymmetry parameters but not the details of the
phase matrix. We are thus testing the accuracy of the
equivalent-sphere formulation for use in energy budget
studies, not for remote sensing; however, we do make some
qualitative comments about the relevance of the formulation
for remote sensing.
[7] The error survey in this paper differs in two ways

from that of GW99. There is an additional variable, the
length-to-width ratio of the ice prisms, and because no exact
solution is available that can presently be used for single-
scattering by hexagonal prisms of arbitrary size, there are
some combinations of wavelength and size for which we are
unable to perform comparisons.

2. Formulation

[8] Following GW99, we represent a particle of volume V
and surface area A by a collection of spheres. Since the ratio
V/A for a sphere equals r/3, we define the radius of the
equal-V/A sphere to be

rVA ¼ 3
V

A
ð1Þ

The number of equivalent spheres, ns, relative to the number
of nonspherical particles, n, is given by

ns

n
¼ 3V

4pr3VA
: ð2Þ

[9] These formulae can be readily applied to the case of
hexagonal prisms. Figure 1 shows three representative cases
with different aspect ratios, each characterized by dimen-
sions a and c specifying the half-width of the basal face
(a-axis dimension) and the length (c-axis dimension) respec-
tively. The radii of the equal-V/A spheres are then given by:

rVA ¼ 3
ffiffiffi
3

p
ac

4cþ 2
ffiffiffi
3

p
a

ð3Þ

The number of spheres needed to represent one prism is
then determined from equations (2) and (3) using

V ¼ 3
ffiffiffi
3

p
a2c

2
ð4Þ

It is convenient to define the aspect ratio, �, for hexagonal
prisms as follows:

� � c

2a
ð5Þ

Equations (1)–(5) can be combined to give

rVA ¼ 3
ffiffiffi
3

p
a�

4�þ
ffiffiffi
3

p ð6aÞ

ns

n
¼

4�þ
ffiffiffi
3

p� �3
36p�2

ð6bÞ

and

V ¼ 3
ffiffiffi
3

p
a3 �: ð6cÞ

[10] Equation (6b) shows that the number of spheres
per crystal depends only on the aspect ratio. Included in
Figure 1 are the values 3.6, 1.7, and 3.6 of ns/n for aspect
ratios of 0.2, 1, and 5, respectively. For long columns with
very large aspect ratios (Shimizu crystals, see Figure 1b of
GW99) we find the following asymptotic value for rVA:

rVA ¼ 3
ffiffiffi
3

p
a

4
¼ 1:299a ð7aÞ

and

ns

n
¼ 16�

9p
¼ 0:5659� ð7bÞ

So ns/n increases in proportion to �. For broad plates with
very small aspect ratios we find

rVA ¼ 3 c

2
ð8aÞ

and

ns

n
¼

ffiffiffi
3

p

12p�2
ð8bÞ

In this case, rVA is proportional to c while ns/n is
proportional to ��2.
[11] The general dependence of ns

n
versus � is shown in

Figure 2. The number of spheres per prism goes through a
minimum value of 1.65 for � = 0.866, and it reaches the
asymptotic limits at aspect ratios below 0.02 and above 10.
Equations (7a) and (8a) illustrate the principle that rVA is
determined mainly by the short dimension and that for
long columns or thin plates the long dimension is used
only for determining the number of spheres. A similar
conclusion has been reached by Mätzler [2002] in a study
of the correlation statistics of snow grains and their
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implications for the optical and microwave properties for
snowpacks.

3. Single Scattering

[12] The scattering properties of spheres were calculated
from Mie theory [Wiscombe, 1979, 1980]. For collections of
randomly oriented hexagonal crystals the following meth-
ods were applied: for particles that are large compared with
the wavelength we used geometric optics [Takano and Liou,
1989; Yang and Liou, 1996a], and for small particles we
used the finite difference time domain method, FDTD [Yang
and Liou, 1995, 1996b]. For the geometric optics calcula-
tions we used the GOM2 code [e.g., Takano and Liou,
1989; Yang and Liou, 1996a; Fu, 1996] kindly provided by
P. Yang and K.-N. Liou. For the FDTD calculations, P. Yang
allowed us to use his program.

3.1. Geometric Optics Method

[13] The principles of the geometric optics method are
asymptotic approximations of electromagnetic theory, valid
for light-scattering computations involving particles with
dimensions much larger than the incident wavelength
[Takano and Liou, 1989]. This method has been used to
evaluate single-scattering properties of cirrus clouds [Fu,
1996] and is useful for terrestrial snow packs. The method
becomes more accurate as the size parameter increases. It is
known to be accurate for typical sizes of cirrus crystals at
solar wavelengths but is often inappropriate for thermal
infrared wavelengths where the ice crystals are no longer
large compared to the wavelength [Fu et al., 1998].
[14] We performed computations for crystals as large as a

few millimeters, to cover sizes found in surface snow as
well as those found in clouds. Hexagonal plates have aspect
ratios less than 0.5. At the extreme of large aspect ratios,
‘‘Shimizu’’ crystals, shown in Figure 1b of Grenfell and
Warren [1999], commonly have values of � near 50. The
size parameter defined by Yang et al. [1997] for hexagonal
prisms is

x ¼ 2p
l

ffiffiffiffiffi
ac

2

r

or from (5):

x ¼ 2pa
l

ffiffiffi
�

p
: ð9Þ

GOM2 remains accurate to size parameters as low as 40.
For extreme values of aspect ratio, however, a criterion
based solely on x is inadequate because the small
dimension, l, of the prism will have a linear size parameter
[2pl/l] that is much smaller than 40. Thus to ensure validity
of GOM2, we performed the calculations only if all three of
the following criteria were satisfied:

x � 40

2pa
l

� 40

pc
l

� 40: ð10Þ

3.2. Finite Difference Time Domain Method

[15] An accurate method for calculating the scattering of
light by hexagonal ice crystals has been developed [Yang
and Liou, 1995; Sun et al., 1999] which has been used for
size parameters up to about 15. This method generates a
numerical solution of Maxwell’s equations expressed as a
coupled set of finite difference equations to calculate the
electromagnetic field in the near field of a crystal. The far-
field scattering matrix is generated using an appropriate
volume integral over the electromagnetic field within the
particle [Yang and Liou, 1996b]. Because the grid spacing
must be chosen to be a fraction of the wavelength of the
radiation, the number of nodes increases sharply with
particle size, and the resulting computational load becomes
correspondingly heavy. For small size parameters it was
necessary to chose a somewhat finer grid spacing to resolve
the exciting wave form accurately. Using the NCAR Black-
forest supercomputer we were able to run calculations up to
size parameters up to about 8 running for 6 hours using 10
processors at a time.

3.3. Results for Single Scattering

[16] The calculations yielded values for the extinction
efficiency, Qext, the single scattering albedo, wo, and the
phase function, p(�) or equivalently Qsca, Qabs, and the
moments of the phase function, gl. The first moment, g1 is
the asymmetry parameter, g. The spectral complex refrac-
tive index of ice used here is the same as was used in
GW99.
[17] In order to average over the resonant peaks in the

Mie phase functions, single-scattering results were com-
bined over a log-normal distribution of particle sizes with a
specified geometric mean radius, rg, and a fixed geometric
standard deviation, sg = 1.23 (cf. Figure 3 of GW99). For
radiative flux calculations, the most useful single number to
characterize a size distribution is the area-weighted mean
radius, or ‘‘effective radius,’’ reff [Hansen and Travis,
1974]:

reff ¼

Z
r3n rð ÞdrZ
r2n rð Þdr

: ð11Þ

For a log-normal distribution [Reist, 1993], reff is given by

reff ¼ rg exp 2:5 ln sg
� �2h i

: ð12Þ

For sg = 1.23, we obtain reff = 1.11 rg. In practice, because
the log-normal distribution was truncated at the wings, a
numerically-determined conversion factor reff = 1.09 rg was
found to be more accurate for the computations we show
here. In the discussions throughout the rest of the paper, size
distributions are identified by the value of rg specified,
unless otherwise indicated. Geometric optics single-scatter-
ing results were combined similarly, i.e., a log-normal
distribution over the a-axis dimension for a given aspect
ratio. Because of greater computational requirements, FDTD
results were not averaged over size distributions. (Grenfell
and Warren [1999] stated that their distributions used
sg = 1.6, but in fact they used sg = 1.23. The conversion
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from rg to reff given in the caption to their Figure 7 is
therefore incorrect; the correct conversion according to
equation (12) is reff = 1.11 rg.)
[18] The phase functions were computed at an angular

sampling density selected so that 10 to 20 points were used
for scattering angles from 0� to 1�, with resolution coars-
ening to 1� for larger scattering angles. Phase functions
were numerically integrated to obtain moments (gl) for use
in multiple-scattering calculations. The numerical quadra-
ture consisted of a trapezoidal rule with respect to cos(�) in
which the logarithm of the phase function was interpolated
using a spline algorithm.
[19] Because the computer time required for the FDTD

calculations was substantial, it was important to optimize
the number of discrete particle orientations needed for an
accurate solution. We investigated the accuracy of the
calculation of Qsca, Qabs, and (1-g) versus the number of
discrete polar (q) and azimuthal (f) orientations assuming
that the solution is accurate for nj = 33 and nq = 33. Results
are shown in Figure 3 for prisms with a = 10 mm and � = 1
at a wavelength of 10 mm. They indicate an error of
approximately 0.1% in all three variables for nj = 8 and
nq = 33, while for nj = 33 and nq = 17 the error is about
0.3% in Qsca and Qabs and about 0.1% in (1-g). Errors are
relatively insensitive to nj but they increase rapidly as nq
decreases below about 10. We anticipate that this threshold
will increase for significantly larger particles. For the results
shown in this paper we used nj = 11 and nq = 10.
[20] Results of the single-scattering calculations for ran-

domly oriented prisms are shown in Figures 4, 5, and 6for
aspect ratios of 0.2 (plates), 1 (equidimensional crystals),
and 5 (columns) respectively. In each figure, values of Qext,
1-wo, and g are plotted versus wavelength for a values of

1, 5, 10, 20, and 100 mm. The crosses indicate the FDTD
results and the broad lines show the GOM2 values, each
covering their respective wavelength domains. For GOM2
the range of applicability is specified by equation (10). This
is why no GOM results are shown for a = 1 mm. For FDTD
we were limited by the available computer capabilities and
the number of cases is therefore more sparse. The narrow
solid lines show the results for the equivalent spheres. The
wavelength range studied (0.2–25 mm) covers essentially
the entire solar shortwave and terrestrial longwave spectral
regions.
[21] The extinction efficiency and single-scattering coal-

bedo of the cylinders are closely approximated at all wave-
lengths by the values for the corresponding equal-V/A
spheres. For � = 0.2 and 5, the asymmetry factor is also
closely represented by the equivalent spheres; however, this
is not true for other values of �. For example, when � = 1
(Figure 5), (1-g) for the spheres is only half that of the
prisms for wavelengths less than about 3 mm. As pointed out
by Liou and Takano [1994] and GW99, among others, the
difficulty with an equivalent sphere representation is in
matching the angular distribution of the single scattering.
Irradiance calculations are sensitive to the value of g unless
the medium is strongly absorbing. As is evident in Figure 5,
the largest departures of g from the true values arise for
larger particles and at visible wavelengths, where the
particles are most transparent.
[22] To investigate how well g values for the equivalent

spheres represent the actual values for the hexagonal prisms,
we show in Figure 7 the dependence of g on aspect ratio for
rVA = 50 mm and l = 0.5 mm. The hexagonal prisms shown
in the figure for � = 0.2, 1, and 5 are drawn accurately to
scale. We see that the agreement in g occurs at aspect ratios
of approximately 0.2 and 14, and the greatest departure
corresponds to � = 1 where the asymmetry parameter for
the spheres is too large. Thus we expect significant errors in
irradiance for equidimensional crystals and very thin plates,
but for very long columns the equivalent spheres may
produce accurate results. In a real cloud which contains a
distribution of aspect ratios, the errors will be smaller than
for the extreme case of the equidimensional crystal. Walden
et al. [2003, Figure 4a] measured the c-axis and a-axis
lengths of 4000 hexagonal prisms at the South Pole, and
found a distribution of aspect ratios; most were between 0.2
and 20.
[23] This behavior of g is most prominent for large size

parameters where GOM2 is applicable. It is due to a
combination of two effects. The presence of sharp edges
and planes intersecting at right angles in the hexagonal
prisms tends to enhance side and backscattering relative
to spheres [Liou, 1973, Figure 1; Wendling et al., 1979,
Figure 8; Mishchenko et al., 1996, Figure 1]. This acts to
reduce the value of g. In contrast, rays passing through
parallel faces of plates are scattered directly forward (‘‘delta-
transmission’’) and tend to increase g relative to the equiv-
alent spheres because delta-transmission does not occur for
spheres. The former effect is dominant for equidimensional
crystals where the smallest fraction of incident rays are
undeflected, so as � departs from unity, g increases to
asymptotic values above those of the equivalent sphere.
These limits are about 0.90 and 0.96 for large and small �
values, respectively.

Figure 3. Discretization error in FDTD for calculations of
Qsca, Qabs, and (1-g) for an assembly of randomly oriented
columns with a = 10 mm, � = c/2a = 1, l = 10 mm, versus
the number of j and q orientations sampled, Ny and Nq,
respectively. The solution is assumed to be accurate for Nq =
33 and Nj = 33.
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[24] Errors in single scattering do not necessarily propa-
gate to errors in multiple scattering. For example, Figures 4
and 6 show significant errors in g for l = 11 and 24.6 mm;
but because (1-wo) is so large at these wavelengths, an ice
cloud is almost totally absorbing, and errors in g have little
effect on computations of radiative fluxes.

4. Multiple Scattering

[25] We now compare the bulk radiative properties of a
horizontally homogeneous cloud of randomly oriented hex-
agonal ice columns to those of a cloud of equal-V/A spheres.
Calculations of the apparent optical properties (hemispher-
ical reflectance, absorptance, and transmittance) were car-
ried out for a cloud consisting only of ice crystals, for
selected wavelengths in the range 0.5–24.6 mm using a
four-stream delta-M discrete-ordinates program [Grenfell,
1991]. To isolate the optical properties of the cloud itself,
the model consisted of a single homogeneous plane parallel
cloud layer over a black surface at 0�K illuminated from
above by a plane wave at a zenith angle of 60�. In the
thermal infrared, the absorptance can be equated to the
directional emissivity at an emission angle of 60�. We plot

the apparent optical properties as functions of the ice water
path (IWP), defined as the total mass per unit area, inte-
grated vertically through the cloud. The relation of IWP to
cloud optical depth, t, is given by equation (13) (equation
(11) of GW99):

t ¼ Ap Qext

V rice
IWP; ð13Þ

where Ap is the projected area, averaged over orientation, of
a single particle (sphere or prism) and rice is the density of
pure ice, 917 kg/m3. For convex particles in general and
hexagonal prisms in particular, Ap = A/4 [Vouk, 1948]; thus

t ¼ A

4V

IWP 	 Qext

rice
: ð14Þ

In terms of the radius of the equivalent sphere, we have
from equation (1):

tp ¼
3

4rVA

IWP 	 Qext pð Þ
rice

; ð15Þ

Figure 4. Extinction efficiency (Qext), single scattering coalbedo (1-wo), and asymmetry parameter (g)
versus wavelength for randomly oriented hexagonal ice plates with c/2a = 0.2 and the corresponding
equal-V/A spheres. The geometric mean values of a for the distributions of hexagonal prisms are
indicated at the top of each column. The crosses show the results of FDTD calculations, the thick solid
lines show the GOM2 results, and the thin lines are for the equivalent spheres.
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where the index p denotes prism. Since equation (14) also
holds for the equivalent spheres, we obtain

tsph
tp

¼ Qext sphð Þ
Qext pð Þ : ð16Þ

Note that this relationship is not limited to hexagonal
prisms; it is exact for any convex particle.
[26] The input to the radiative transfer calculations are the

single-scattering quantities for given a and �, as shown in
Figures 4–6 for selected values of a, and t, which is
obtained from equations (15) and (6a) given IWP, a, and
�. Calculations were carried out for ice-water-paths of 0.4
to 200,000 g m�2, effective a-axis lengths of 0.5 to 200 mm,
and aspect ratios 0.2, 1.0, and 5.0.
[27] Contours of approximate optical depths implied by

all combinations of IWP and rVA are shown in Figure 8. The
precise optical depth depends on wavelength, because Qext

depends on wavelength. For simplicity in Figure 8 we have
simply used the geometric optics limit, Qext = 2, to plot the
‘‘geometric-optics’’ optical depth, tg. The ice-water paths
and particle radii appropriate for snow, cirrus clouds, and
polar stratospheric clouds are indicated in the figure.
[28] Figures 9 through 17 show the values of cloud

reflectance, absorptance, and transmittance together with
the differences between the exact solution and the equiva-

lent-sphere results for the particular wavelengths 0.5, 1.6,
3.73, 11, and 24.6 mm. Reflectance is defined as the ratio of
upwelling irradiance above the cloud to the incident irradi-
ance. Absorptance and transmittance are ratios of absorbed
and transmitted irradiance to incident irradiance. The min-
imum size parameters used for GOM2 results are as
specified by equation (10). FDTD results were achievable
only for size parameters up to about 8 owing to limitations
in computing resources, resulting in a gap for intermediate
particle sizes indicated in the figures by the shaded areas.
[29] The results shown in Figures 9–17 span a very large

range in optical depth, from approximately 10-3 to 2 
 105,
as shown in Figure 8, covering reflectance values of
essentially zero for the smallest optical depths up to
reflectance saturation with essentially zero transmittance
for the largest optical depths. For large particles, reflectance
decreases with increasing particle size, as seen in the upper
left frame of Figure 9 for l = 0.5 mm. For very small
particles this trend reverses, as seen for a <1 mm at l =
1.6 mm and l = 3.73 mm. This is because in the geometric
optics limit Qext is a constant (Qext = 2), so t � rVA

�1

(equation (15)), whereas in the Rayleigh regime (r � l),
Qext � r4 so t � rVA

3 .
[30] The errors in visible reflectance (l = 0.5 mm in

Figures 9, 12, 15) are greatest where the reflectance is near
0.5; the errors are small for very thin and very thick clouds.

Figure 5. The same results as Figure 4 but for equidimensional crystals (c/2a = 1).
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Figure 6. The same results as Figure 4 but for columns (c/2a = 5).

Figure 7. Asymmetry parameter versus aspect ratio for
hexagonal prisms corresponding to equivalent spheres of
50 mm radius at a wavelength of 0.5 mm. The dashed line
gives the g value for the equal-V/A spheres. The crystal
shapes for aspect ratios 0.2, 1, and 5 are drawn to scale.

Figure 8. Contours of constant optical depth (tg) in the
geometric-optics limit (Qext = 2) for the ranges of ice water
path and radius of equal-V/A spheres covered inFigures 9–17.
The combinations of ice water paths and particle radii
appropriate for snow, cirrus clouds, and polar stratospheric
clouds (PSCs) are indicated.
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Figure 9. Contours of reflectance of clouds consisting of ice plates (c/2a = 0.2) and of the
corresponding errors introduced by the use of equal-V/A spheres to represent the plates, as functions of
ice water path and a-axis length, for the five wavelengths (l) specified. The corresponding radius (reff) of
the equal-V/A spheres is also given as the lower abscissa. The plotted error is the approximate reflectance
(using spheres) minus the true reflectance.

NESHYBA ET AL.: LIGHT SCATTERING BY ICE CLOUDS AAC 6 - 9



The absorptance error is very small in the visible range
because the absorptance itself is small, so the transmit-
tance error is the same as the reflectance error with
opposite sign.
[31] For the plates ((c/2a) = � = 0.2), the errors in all

three quantities are less than 0.04 over most of the three-
dimensional space of l, a, and IWP, and less than 0.02 over
much of that space, in particular for the large size parameter

(GOM2) regime. The zones of vertical isolines indicate the
regions of large t where the reflectance is saturated. The
magnitudes of the maximum errors are 0.09 for reflectance
(l = 3.73 mm), 0.08 for absorptance (l = 3.73 mm), and
0.09 for transmittance (l = 1.6 and 3.73 mm); these largest
errors generally occur only for IWP values of about 1 to
10 g/m2. They arise primarily from differences in total
optical depth between the cloud of crystals and the cloud of

Figure 10. Same as Figure 9 but for absorptance.
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spheres as a result of differences in Qext as indicated by
equation (16). These differences occur for small size
parameters, in the FDTD range, and for transmittances of
about 0.5 where transmittance is most sensitive to changes
in IWP. The same effect is apparent but to a lesser degree
for the comparison with infinite cylinders [GW99] and the
difference in Qext values is consistent with the results of Fu

et al. [1999, Figure 3]. If we were to require arbitrarily that
tp = tsph this error would be reduced considerably, but the
equivalent sphere representation would no longer be self-
consistent.
[32] For equidimensional prisms (Figures 12–14), the

magnitude of the errors is generally less than 0.06. At
24.6 mm the errors are as small as those for � = 0.2.

Figure 11. Same as Figure 9 but for transmittance.
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There is, however, a significant error of as much as 0.13
for reflectance and transmittance at visible wavelengths
because the asymmetry parameters calculated for the
equivalent spheres are significantly larger than for the
prisms. As is evident from Figure 7, the case of � = 1

shows the greatest difference between the prisms and the
spheres, and the error decreases rapidly as � departs from
unity.
[33] For columns, � = 5 (Figures 15–17), the situation is

similar to the case � = 0.2. The asymmetry parameters of

Figure 12. Reflectance and reflectance errors. Same as for Figure 9 but for equidimensional prisms
(c/2a = 1).
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the columns are again close to those of the spheres. The
maximum errors are generally less than 0.04 and occur
where transmittance is most sensitive to changes in IWP.
[34] In all of these figures (Figures 9–17) there is a large

blank region of intermediate crystal sizes where we were
unable to compute radiative properties exactly because of
the limitations of the FDTD method. In the future this

region may become accessible as the FDTD method is made
more efficient and computers become more powerful. In the
meantime we can refer to GW99 as a guide to what errors
will be caused by the equivalent-sphere representation in
this size domain. The contours in Figures 7–9 of GW99 are
rather flat across this size domain at wavelengths 0.5, 11,
and 24.6 mm, but at l = 1.6 and 3.73 mm they do show

Figure 13. Same as for Figure 12 but for absorptance.
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somewhat higher errors for intermediate sizes than for
smaller and larger crystals.

5. Discussion and Conclusions

[35] The representation by equal-V/A spheres allows
accurate computation of angular-averaged reflectance,
transmittance, and absorptance for a multiple scattering

medium consisting of columns with � = 5. Figure 7
indicates that the errors for any columns with � > 5 should
be no larger than those shown for � = 5. For � < 5 the
domain of validity is not universal. Errors are quite small
over most of the parameter space (a, l, �, IWP) accessible
to FDTD and geometric-optics calculations but can exceed
0.1 for certain combinations of these parameters. In partic-
ular, for equidimensional prisms the use of equal-V/A

Figure 14. Same as for Figure 12 but for transmittance.
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spheres causes a large underestimation of the visible reflec-
tance for clouds of intermediate optical depth where reflec-
tance 
0.5. The practical significance of this error depends
on the abundance of hexagonal prisms with � < 5 in real
clouds.
[36] An analysis of atmospheric ice crystals collected at

South Pole station during the winter [Walden et al., 2003]

shows that there is a gap at � = 1 where the occurrence of
crystals is rare. The aspect ratios appear to have a bimodal
distribution with median values of � of about 0.4 and 3.
Figure 7 shows, however, that the error in g at l = 0.5 mm is
almost as large for � = 0.4 as for � = 1. The equal-V/A
prescription will therefore overestimate the visible transmit-
tance of Antarctic clouds.

Figure 15. Reflectance and reflectance errors. Same as Figure 9 but for columns (c/2a = 5).
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[37] The explanations given in the discussion of Figure 7
for the discrepancy between g and gs depend on the pristine
shapes of the crystals. Such crystals do exist in the Antarctic
atmosphere [GW99, Figure 1; Walden et al., 2003], but
cirrus clouds, which occur worldwide, are of much greater
climatic significance. In general their crystals are rarely of

the pristine type considered here. They are made up of more
irregular crystals, such as complex clusters of hollow bullets
with nonparallel walls [Ono, 1969; Heymsfield, 1975;
Heymsfield and Platt, 1984; Lawson et al., 1998]. It will
therefore be important to examine the ability of equal-V/A
spheres to mimic the absorption and scattering by irregular

Figure 16. Same as for Figure 15 but for absorptance.

AAC 6 - 16 NESHYBA ET AL.: LIGHT SCATTERING BY ICE CLOUDS



Figure 17. Same as for Figure 15 but for transmittance.

NESHYBA ET AL.: LIGHT SCATTERING BY ICE CLOUDS AAC 6 - 17



and hollow crystals. In that case, the value of V is the
volume occupied by ice, and A is the total area of both
internal and external surfaces.
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