103 research outputs found

    Coriolis force in Geophysics: an elementary introduction and examples

    Get PDF
    We show how Geophysics may illustrate and thus improve classical Mechanics lectures concerning the study of Coriolis force effects. We are then interested in atmospheric as well as oceanic phenomena we are familiar with, and are for that reason of pedagogical and practical interest. Our aim is to model them in a very simple way to bring out the physical phenomena that are involved.Comment: Accepted for publication in European Journal of Physic

    Tropospheric ozone over Equatorial Africa: regional aspects from the MOZAIC data

    Get PDF
    We analyze ozone observations recorded over Equatorial Africa between April 1997 and March 2003 by the MOZAIC programme, providing the first ozone climatology deriving from continental in-situ data over this region. Three-dimensional streamlines strongly suggests connections between the characteristics of the ozone monthly mean vertical profiles, the most persistent circulation patterns in the troposphere over Equatorial Africa (on a monthly basis) such as the Harmattan, the African Easterly Jet, the Trades and the regions of ozone precursors emissions by biomass burning. During the biomass burning season in each hemisphere, the lower troposphere exhibits layers of enhanced ozone (i.e. 70 ppbv over the coast of Gulf of Guinea in December-February and 85 ppbv over Congo in June-August). The characteristics of the ozone monthly mean vertical profiles are clearly connected to the regional flow regime determined by seasonal dynamic forcing. The mean ozone profile over the coast of Gulf of Guinea in the burning season is characterized by systematically high ozone below 650hPa ; these are due to the transport by the Harmattan and the AEJ of the pollutants originating from upwind fires. The confinement of high ozone to the lower troposphere is due to the high stability of the Harmattan and the blocking Saharan anticyclone which prevents efficient vertical mixing. In contrast, ozone enhancements observed over Central Africa during the local dry season (June-August) are not only found in the lower troposphere but throughout the troposphere. Moreover, this study highlights a connection between the regions of the coast of Gulf of Guinea and regions of Congo to the south that appears on a semi annual basis. Vertical profiles in wet-season regions exhibit ozone enhancements in the lower troposphere due to biomass burning products transport from fires situated in the opposite dry-season hemisphere

    Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice

    Get PDF
    Background: In mammals, new neurons are added to the olfactory bulb (OB) throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ) lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear. Methodology/Principal Findings: In this study, we irradiated adult mice to impair constitutive OB neurogenesis, and explored the functional impacts of this irradiation on the sense of smell. We found that focal irradiation of the SVZ greatly decreased the rate of production of new OB neurons, leaving other brain areas intact. This effect persisted for up to seven months after exposure to 15 Gray. Despite this robust impairment, the thresholds for detecting pure odorant molecules and short-term olfactory memory were not affected by irradiation. Similarly, the ability to distinguish between odorant molecules and the odorant-guided social behavior of irradiated mice were not affected by the decrease in the number of new neurons. Only long-term olfactory memory was found to be sensitive to SVZ irradiation. Conclusion/Significance: These findings suggest that the continuous production of adult-generated neurons is involved i

    Paced-Mating Increases the Number of Adult New Born Cells in the Internal Cellular (Granular) Layer of the Accessory Olfactory Bulb

    Get PDF
    The continuous production and addition of new neurons during life in the olfactory bulb is well accepted and has been extensively studied in rodents. This process could allow the animals to adapt to a changing environment. Olfactory neurogenesis begins in the subventricular zone where stem cells proliferate and give rise to young undifferentiated neuroblasts that migrate along the rostral migratory stream to the olfactory bulb (OB). Olfaction is crucial for the expression of sexual behavior in rodents. In female rats, the ability to control the rate of sexual interactions (pacing) has important physiological and behavioral consequences. In the present experiment we evaluated if pacing behavior modifies the rate of new cells that reach the main and accessory olfactory bulb. The BrdU marker was injected before and after different behavioral tests which included: females placed in a mating cage (control), females allowed to pace the sexual interaction, females that mated but were not able to control the rate of the sexual interaction and females exposed to a sexually active male. Subjects were sacrificed fifteen days after the behavioral test. We observed a significant increase in the density of BrdU positive cells in the internal cellular layer of the accessory olfactory bulb when females paced the sexual interaction in comparison to the other 3 groups. No differences in the cell density in the main olfactory bulb were found. These results suggest that pacing behavior promotes an increase in density of the new cells in the accessory olfactory bulb

    Reduced Proliferation in the Adult Mouse Subventricular Zone Increases Survival of Olfactory Bulb Interneurons

    Get PDF
    Neurogenesis in the adult brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle, olfactory bulb (OB) and the dentate subgranular zone, and survival of adult-born cells in the OB is influenced by factors including sensory experience. We examined, in mice, whether survival of adult-born cells is also regulated by the rate of precursor proliferation in the SVZ. Precursor proliferation was decreased by depleting the SVZ of dopamine after lesioning dopamine neurons in the substantia nigra compacta with 6-hydroxydopamine. Subsequently, we examined the effect of reduced SVZ proliferation on the generation, migration and survival of neuroblasts and mature adult-born cells in the SVZ, rostral migratory stream (RMS) and OB. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 47% or 36%, respectively, 7 days after dopamine depletion, and by 29% or 31% 42 days after dopamine depletion, compared to sham-treated animals. Neuroblast generation in the SVZ and their migration along the RMS were not affected, neither 7 nor 42 days after the 6-hydroxydopamine injection, since the number of doublecortin-immunoreactive neuroblasts in the SVZ and RMS, as well as the number of neuronal nuclei-immunoreactive cells in the OB, were stable compared to control. However, survival analysis 15 days after 6-hydroxydopamine and 6 days after BrdU injections showed that the number of BrdU+ cells in the SVZ was 70% higher. Also, 42 days after 6-hydroxydopamine and 30 days after BrdU injections, we found an 82% increase in co-labeled BrdU+/γ-aminobutyric acid-immunoreactive cell bodies in the granular cell layer, while double-labeled BrdU+/tyrosine hydroxylase-immunoreactive cell bodies in the glomerular layer increased by 148%. We conclude that the number of OB interneurons following reduced SVZ proliferation is maintained through an increased survival of adult-born precursor cells, neuroblasts and interneurons

    Hippocampal IGF-1 expression, neurogenesis and slowed aging: clues to longevity from mutant mice

    Get PDF
    Recent studies point out the important role of IGF and insulin-related signaling pathways in the control of longevity of laboratory animals. The Ames dwarf mouse is a murine model of circulating GH and IGF-1 deficiency that exhibits dwarf phenotype characteristics and significantly extends lifespan. It is interesting to know that Ames dwarf mice do not experience an age-related decline in cognitive function when compared to their young counterparts. In this study, the most recent works on local GH and IGF-1 expression in the hippocampus of Ames mice are briefly reviewed

    Juvenile Greylag Geese (Anser anser) Discriminate between Individual Siblings

    Get PDF
    Social species that maintain individualised relationships with certain others despite continuous changes in age, reproductive status and dominance rank between group members ought to be capable of individual recognition. Tests of “true” individual recognition, where an individual recognises unique features of another, are rare, however. Often kinship and/or familiarity suffice to explain dyadic interactions. The complex relationships within a greylag goose flock suggest that they should be able to recognise individuals irrespective of familiarity or kinship. We tested whether six-week-old hand-raised greylags can discriminate between two of their siblings. We developed a new experimental protocol, in which geese were trained to associate social siblings with geometrical symbols. Subsequently, focals were presented with two geometrical symbols in the presence of a sibling associated with one of the symbols. Significant choice of the geometrical symbol associated with the target present indicated that focals were able to distinguish between individual targets. Greylag goslings successfully learned this association-discrimination task, regardless of genetic relatedness or sex of the sibling targets. Social relationships within a goose flock thus may indeed be based on recognition of unique features of individual conspecifics

    Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    Get PDF
    BACKGROUND: Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits

    Neural Circuits Underlying Rodent Sociality: A Comparative Approach

    Get PDF
    All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual’s life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species
    corecore