10,694 research outputs found

    Breaking the Rayleigh-Plateau instability limit using thermocavitation within a droplet

    Get PDF
    We report on the generation of liquid columns that extend far beyond the traditional Rayleigh-Plateau instability onset. The columns are driven by the acoustic pressure wave emitted after bubble collapse. A high-speed video imaging device, which records images at a rate of up to 105 fps, was employed to follow their dynamics. These bubbles, commonly termed thermocavitation bubbles, are generated by focusing a midpower (275 mW) continuous wavelength laser into a highly absorbing liquid droplet. A simple model of the propagation of the pressure wavefront emitted after the bubble collapse shows that focusing the pressure wave at the liquid-air interface drives the evolution of the liquid columns. Control over the aspect ratio of the liquid column is realized by adjusting the cavitation bubble's size, beam focus position, and droplet volume. © 2013 by Begell House, Inc

    Using velocity to predict the maximum dynamic strength in the power clean

    Get PDF
    The primary aim of the present study was to examine the commonly performed training exercise for athlete preparation. Twenty-two recreationally trained males (age: 26.3 ± 4.1 y, height: 1.80 ± 0.07 m; body mass (BM): 87.01 ± 13.75 kg, 1-repetitoon maximum(1-RM)/BM: 0.90 ± 0.19 kg) participated in the present study. All subjects had their 1-RM power clean tested with standard procedures. On a separate testing day, subjects performed three repetitions at 30% and 45%, and two repetitions at 70% and 80% of their 1-RM power clean. During all trials during both sessions, peak velocity (PV) and mean velocity (MV) were measured with the use of a GymAware device. There were no significant differences between the actual and estimated 1-RM power clean (p = 0.37, ES = —0.11) when the load-PV profile was utilized. There was a large typical error (TE) present for the load-PV- and load-MV-estimated 1-RM values. Additionally, the raw TE exceeded the smallest worthwhile change for both load-PV and load-MV profile results. Based upon the results of this study, the load-velocity profile is not an acceptable tool for monitoring power clean strength

    Centennial-scale vegetation and North Atlantic Oscillation changes during the Late Holocene in the southern Iberia

    Get PDF
    High-reso CE to lution pollen analysis, charcoal, non-pollen palynomorphs and magnetic susceptibility have been analyzed in the sediment record of a peat bog in Sierra Nevada in southern Iberia. The study of these proxies provided the reconstruction of vegetation, climate, fire and human activity of the last ∼4500 cal yr BP. A progressive trend towards aridification during the late Holocene is observed in this record. This trend is interrupted by millennial- and centennial-scale variability of relatively more humid and arid periods. Arid conditions are recorded between ∼4000 and 3100 cal yr BP, being characterized by a decline in arboreal pollen and with a spike in magnetic susceptibility. This is followed by a relatively humid period from ∼3100 to 1600 cal yr BP, coinciding partially with the Iberian-Roman Humid Period, and is indicated by the increase of Pinus and the decrease in xerophytic taxa. The last 1500 cal yr BP are characterized by several centennial-scale climatic oscillations. Generally arid conditions from ∼450 to 1300 CE, depicted by a decrease in Pinus and an increase in Artemisia, comprise the Dark Ages and the Medieval Climate Anomaly. Since ∼ 1300 to 1850 CE pronounced oscillations occur between relatively humid and arid conditions. Four periods depicted by relatively higher Pinus coinciding with the beginning and end of the Little Ice Age are interrupted by three arid events characterized by an increase in Artemisia. These alternating arid and humid shifts could be explained by centennial-scale changes in the North Atlantic Oscillation and solar activity

    Type O pure radiation metrics with a cosmological constant

    Get PDF
    In this paper we complete the integration of the conformally flat pure radiation spacetimes with a non-zero cosmological constant Λ\Lambda, and τ≠0\tau \ne 0, by considering the case Λ+ττˉ≠0\Lambda +\tau\bar\tau \ne 0. This is a further demonstration of the power and suitability of the generalised invariant formalism (GIF) for spacetimes where only one null direction is picked out by the Riemann tensor. For these spacetimes, the GIF picks out a second null direction, (from the second derivative of the Riemann tensor) and once this spinor has been identified the calculations are transferred to the simpler GHP formalism, where the tetrad and metric are determined. The whole class of conformally flat pure radiation spacetimes with a non-zero cosmological constant (those found in this paper, together with those found earlier for the case Λ+ττˉ=0\Lambda +\tau\bar\tau = 0) have a rich variety of subclasses with zero, one, two, three, four or five Killing vectors

    Structure of Lambda(1405) and chiral dynamics

    Full text link
    We report on a recent theoretical work on the structure of the Lambda(1405) resonance within a chiral unitary approach, in which the resonance is dynamically generated in meson-baryon scattering. Studying the analytic structure of the scattering amplitude, we have found that there are two poles lying around energies of Lambda(1405) with different widths and couplings to the meson-baryon states. We discuss reactions to conform the double pole structure in experiment and elastic K^- p scattering at low energies.Comment: 4 pages, LaTeX, 2 eps figures. Talk given at 10th International Conference on the Structure of Baryons (Baryon 2004) at Palaiseau (France), 25-29 October 200

    The Orbit of the New Milky Way Globular Cluster FSR1716 =VVV-GC05

    Get PDF
    Indexación: Scopus.We use deep, multi-epoch near-IR images of the VISTA Variables in the Via Lictea (VVV) Survey to measure proper motions (PMs) of stars in the Milky Way globular cluster (GC) FSR1716 = VVV-GC05. The colormagnitude diagram of this object, made by using PM-selected members, shows an extended horizontal branch, nine confirmed RR Lyrae (RRL) members in the instability strip, and possibly several hotter stars extending to the blue. Based on the fundamental-mode (ab-type) RRL stars that move coherently with the cluster, we confirmed that FSR1716 is an Oosterhoff I GC with a mean period aPabn = 0.574 days. Intriguingly, we detect tidal extensions to both sides of this cluster in the spatial distribution of PM-selected member stars. Also, one of the confirmed RRabs is located -11 arcmin in projection from the cluster center, suggesting that FSR1716 may be losing stars due to the gravitational interaction with the Galaxy. We also measure radial velocities (RVs) for five cluster red giants selected using the PMs. The combination of RVs and PMs allow us to compute for the first time the orbit of this GC, using an updated Galactic potential. The orbit results to be confined within|Zmax| < 2.0 kpc, and has eccentricity 0.4 < e < 0.6, with perigalactic distance 1.5 < Rperi (kpc) < 2.3, and apogalactic distance 5.3 < Rapo (kpc) < 6.4. We conclude that, in agreement with its relatively low metallicity ([Fe/H] =-1.4 dex), this is an inner-halo GC plunging into the disk of the Galaxy. As such, this is a unique object with which to test the dynamical processes that contribute to the disruption of Galactic GCs. © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-4357/aacd0

    Dynamical Generation of Hyperon Resonances

    Get PDF
    In this talk we report on how, using a chiral unitary approach for the meson--baryon interactions, two octets of Jπ=1/2−J^{\pi}=1/2^- baryon states and a singlet are generated dynamically, resulting in the case of strangeness S=−1S=-1 in two poles of the scattering matrix close to the nominal Λ(1405)\Lambda(1405) resonance. We suggest experiments which could show evidence for the existence of these states.Comment: Invited talk in the VIII International Conference on Hypernuclei and Strange Particle Physic
    • …
    corecore