8 research outputs found

    Caloric restriction counteracts age-dependent changes in prolyl-4-hydroxylase domain (PHD) 3 expression

    Get PDF
    Caloric restriction remains the most reproducible measure known to extend life span or diminish age-associated changes. Previously, we have described an elevated expression of the prolyl-4-hydroxylase domain (PHD) 3 with increasing age in mouse and human heart. PHDs modulate the cellular response towards hypoxia by regulating the stability of the α-subunit of the transcriptional activator hypoxia inducible factor (HIF). In the present study we demonstrate that elevated PHD3, but not PHD1 or PHD2, expression is not restricted to the heart but does also occur in rat skeletal muscle and liver. Elevated expression of PHD3 is counteracted by a decrease in caloric intake (40% caloric restriction applied for 6 months) in all three tissues. Age-associated changes in PHD3 expression inversely correlated with the expression of the HIF-target gene macrophage migration inhibitory factor (MIF), which has been previously described to be involved in cellular HIF-mediated anti-ageing effects. These data give insight into the molecular consequences of caloric restriction, which influences hypoxia-mediated gene expression via PHD3

    Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α

    No full text
    To investigate whether the transcriptional activator hypoxia-inducible factor 1 (HIF-1) is required for ventilatory responses to hypoxia, we analyzed mice that were either wild type or heterozygous for a loss-of-function (knockout) allele at the Hif1a locus, which encodes the O(2)-regulated HIF-1α subunit. Although the ventilatory response to acute hypoxia was not impaired in Hif1a(+/−) mice, the response was primarily mediated via vagal afferents, whereas in wild-type mice, carotid body chemoreceptors played a predominant role. When carotid bodies isolated from wild-type mice were exposed to either cyanide or hypoxia, a marked increase in sinus nerve activity was recorded, whereas carotid bodies from Hif1a(+/−) mice responded to cyanide but not to hypoxia. Histologic analysis revealed no abnormalities of carotid body morphology in Hif1a(+/−) mice. Wild-type mice exposed to hypoxia for 3 days manifested an augmented ventilatory response to a subsequent acute hypoxic challenge. In contrast, prior chronic hypoxia resulted in a diminished ventilatory response to acute hypoxia in Hif1a(+/−) mice. Thus partial HIF-1α deficiency has a dramatic effect on carotid body neural activity and ventilatory adaptation to chronic hypoxia

    Age-related atrial fibrosis

    No full text
    Many age-related diseases are associated with, and may be promoted by, cardiac fibrosis. Transforming growth factor (TGF)-ÎČ, hypoxia-induced factor (HIF), and the matrix metalloproteinase (MMP) system have been implicated in fibrogenesis. Thus, we investigated whether age is related to these systems and to atrial fibrosis. Right atrial appendages (RAA) obtained during heart surgery (n = 115) were grouped according to patients’ age (<50 years, 51–60 years, 61–70 years, or >70 years). Echocardiographic ejection fractions (EF) and fibrosis using Sirius-red-stained histological sections were determined. TGF-ÎČ was determined by quantitative RT-PCR and hypoxia-related factors [HIF1α, the vascular endothelial growth factor (VEGF)-receptor, CD34 (a surrogate marker for microvessel density), the factor inhibiting HIF (FIH), and prolyl hydroxylase 3 (PHD 3)] were detected by immunostaining. MMP-2 and -9 activity were determined zymographically, and mRNA levels of their common tissue inhibitor TIMP-1 were determined by RT-PCR. Younger patients (<50 years) had significantly less fibrosis (10.1% ± 4.4% vs 16.6% ± 8.3%) than older individuals (>70 years). While HIF1α, FIH, the VEGF-receptor, and CD34 were significantly elevated in the young, TGF-ÎČ and PHD3 were suppressed in these patients. MMP-2 and -9 activity was found to be higher while TIMP-1 levels were lower in older patients. Statistical analysis proved age to be the only factor influencing fibrogenesis. With increasing age, RAAs develop significantly more fibrosis. An increase of fibrotic and decrease of hypoxic signalling and microvessel density, coupled with differential expression of MMPs and TIMP-1 favouring fibrosis may have helped promote atrial fibrogenesis

    Molecular aspects of the cardioprotective effect of exercise in the elderly

    No full text

    Molecular aspects of the cardioprotective effect of exercise in the elderly

    No full text

    Developmental and pathological angiogenesis in the central nervous system

    No full text
    corecore