3,109 research outputs found

    Reading between the lines: attitudinal expressions in text

    Get PDF
    This is a brief overview of the starting points a project currently proposed and under evaluation by funding agencies. We discuss some of the linguistic methodology we plan to employ to idenitify and analyze attitudinal expressions in text, and touch briefly on how to evaluate our future results

    A Bayesian model for identifying hierarchically organised states in neural population activity

    No full text
    Neural population activity in cortical circuits is not solely driven by external inputs, but is also modulated by endogenous states. These cortical states vary on multiple time-scales and also across areas and layers of the neocortex. To understand information processing in cortical circuits, we need to understand the statistical structure of internal states and their interaction with sensory inputs. Here, we present a statistical model for extracting hierarchically organized neural population states from multi-channel recordings of neural spiking activity. We model population states using a hidden Markov decision tree with state-dependent tuning parameters and a generalized linear observation model. Using variational Bayesian inference, we estimate the posterior distribution over parameters from population recordings of neural spike trains. On simulated data, we show that we can identify the underlying sequence of population states over time and reconstruct the ground truth parameters. Using extracellular population recordings from visual cortex, we find that a model with two levels of population states outperforms a generalized linear model which does not include state-dependence, as well as models which only including a binary state. Finally, modelling of state-dependence via our model also improves the accuracy with which sensory stimuli can be decoded from the population response

    Where to stand when playing darts?

    Get PDF
    This paper analyzes the question of where one should stand when playing darts. If one stands at distance d>0d>0 and aims at aRna\in \mathbb{R}^n, then the dart (modelled by a random vector XX in Rn\mathbb{R}^n) hits a random point given by a+dXa+dX. Next, given a payoff function ff, one considers supaEf(a+dX) \sup_a Ef(a+dX) and asks if this is decreasing in dd; i.e., whether it is better to stand closer rather than farther from the target. Perhaps surprisingly, this is not always the case and understanding when this does or does not occur is the purpose of this paper. We show that if XX has a so-called selfdecomposable distribution, then it is always better to stand closer for any payoff function. This class includes all stable distributions as well as many more. On the other hand, if the payoff function is cos(x)\cos(x), then it is always better to stand closer if and only if the characteristic function ϕX(t)|\phi_X(t)| is decreasing on [0,)[0,\infty). We will then show that if there are at least two point masses, then it is not always better to stand closer using cos(x)\cos(x). If there is a single point mass, one can find a different payoff function to obtain this phenomenon. Another large class of darts XX for which there are bounded continuous payoff functions for which it is not always better to stand closer are distributions with compact support. This will be obtained by using the fact that the Fourier transform of such distributions has a zero in the complex plane. This argument will work whenever there is a complex zero of the Fourier transform. Finally, we analyze if the property of it being better to stand closer is closed under convolution and/or limits.Comment: 31 page

    Psychological Distress and Well-Being among Students of Health Disciplines: The Importance of Academic Satisfaction

    Full text link
    Background: Research on the mental health of students in health disciplines mainly focuses on psychological distress and nursing and medical students. This study aimed to investigate the psychological well-being and distress and related factors among undergraduate students training in eight different health-related tracks in Geneva, Switzerland. Methods: This cross-sectional study used established self-filled scales for anxiety, depression, stress, psychological well-being, and study satisfaction. Descriptive statistics and hierarchical regression analyses were applied. Results: In October 2019, out of 2835 invited students, 915 (32%) completed the survey. Lower academic satisfaction scores were strongly associated with depression (β = −0.26, p < 0.001), anxiety (β = −0.27, p < 0.001), and stress (β = −0.70, p < 0.001), while higher scores were associated with psychological well-being (β = 0.70, p < 0.001). Being female was strongly associated with anxiety and stress but not with depression or psychological well-being. Increased age was associated with enhanced psychological well-being. The nature of the academic training had a lesser impact on mental health and the academic year had none. Conclusion: Academic satisfaction strongly predicts depression, anxiety, stress, and psychological well-being. Training institutions should address the underlying factors that can improve students’ satisfaction with their studies while ensuring that they have access to psychosocial services that help them cope with mental distress and enhance their psychological well-bein

    Experimental characterization of frequency dependent squeezed light

    Full text link
    We report on the demonstration of broadband squeezed laser beams that show a frequency dependent orientation of the squeezing ellipse. Carrier frequency as well as quadrature angle were stably locked to a reference laser beam at 1064nm. This frequency dependent squeezing was characterized in terms of noise power spectra and contour plots of Wigner functions. The later were measured by quantum state tomography. Our tomograph allowed a stable lock to a local oscillator beam for arbitrary quadrature angles with one degree precision. Frequency dependent orientations of the squeezing ellipse are necessary for squeezed states of light to provide a broadband sensitivity improvement in third generation gravitational wave interferometers. We consider the application of our system to long baseline interferometers such as a future squeezed light upgraded GEO600 detector.Comment: 8 pages, 8 figure

    SCORPIO-II: Spectral indices of weak Galactic radio sources

    Get PDF
    In the next few years the classification of radio sources observed by the large surveys will be a challenging problem, and spectral index is a powerful tool for addressing it. Here we present an algorithm to estimate the spectral index of sources from multiwavelength radio images. We have applied our algorithm to SCORPIO (Umana et al. 2015), a Galactic Plane survey centred around 2.1 GHz carried out with ATCA, and found we can measure reliable spectral indices only for sources stronger than 40 times the rms noise. Above a threshold of 1 mJy, the source density in SCORPIO is 20 percent greater than in a typical extra-galactic field, like ATLAS (Norris et al. 2006), because of the presence of Galactic sources. Among this excess population, 16 sources per square degree have a spectral index of about zero, suggesting optically thin thermal emission such as Hii regions and planetary nebulae, while 12 per square degree present a rising spectrum, suggesting optically thick thermal emission such as stars and UCHii regions.Comment: 12 pages, 11 figures, accepted by MNRA

    Preparation of distilled and purified continuous variable entangled states

    Full text link
    The distribution of entangled states of light over long distances is a major challenge in the field of quantum information. Optical losses, phase diffusion and mixing with thermal states lead to decoherence and destroy the non-classical states after some finite transmission-line length. Quantum repeater protocols, which combine quantum memory, entanglement distillation and entanglement swapping, were proposed to overcome this problem. Here we report on the experimental demonstration of entanglement distillation in the continuous-variable regime. Entangled states were first disturbed by random phase fluctuations and then distilled and purified using interference on beam splitters and homodyne detection. Measurements of covariance matrices clearly indicate a regained strength of entanglement and purity of the distilled states. In contrast to previous demonstrations of entanglement distillation in the complementary discrete-variable regime, our scheme achieved the actual preparation of the distilled states, which might therefore be used to improve the quality of downstream applications such as quantum teleportation
    corecore