1,351 research outputs found

    Internal convective cooling systems for hypersonic aircraft

    Get PDF
    Parametric studies were conducted to investigate the relative merits of construction materials, coolants, and cooled panel concepts for internal convective cooling systems applied to airframe structures of hydrogen-fueled hypersonic aircraft. These parametric studies were then used as a means of comparing various cooled structural arrangements for a hypersonic transport and a hypersonic research airplane. The cooled airplane studies emphasized weight aspects as related to the choice of materials, structural arrangements, structural temperatures, and matching of the cooling system heat load to the available hydrogen fuel-flow heat sink. Consideration was given to reliability and to fatigue and fracture aspects, as well. Even when auxiliary thermal protection system items such as heat shielding, insulation, and excess hydrogen for cooling are considered the more attractive actively cooled airframe concepts indicated potential payload increases of from 40 percent to over 100 percent for the hypersonic transport as compared to the results of previous studies of the same vehicle configuration with an uncooled airframe

    Data and results from a study of internal convective cooling systems for hypersonic aircraft

    Get PDF
    An extensive survey of current and future airframe construction materials and coolants was conducted, so that the most promising candidates could be examined for cooled-panel, cooling-system and airframe concepts. Consideration was given to over 100 structural materials, 50 coolants, 6 classes of structural panel concepts, 4 classes of thermal panel concepts with numerous variations, and 3 overall cooled airframe design approaches, including unshielded, shielded, and dual temperature types. The concept identification and parametric comparison phase examined all major elements of the convectively cooled airframe, including the differing requirements at various locations on the aircraft. The parametric results were used for the investigation to two separate vehicles, a hypersonic transport with a length of 96 meters (314 feet) and a weight of 24,000 kg (528,600 lb) and a hypersonic research airplane, with a length of 25m (80 ft) and a weight of 20,300 kg (447,000 lb)

    The Role of Solar Wind Hydrogen in Space Weathering: Insights from Laboratory-Irradiated Northwest Africa 12008

    Get PDF
    Micrometeoroid impacts, solar wind plasma interactions, and regolith gardening drive the complicated and nuanced mechanism of space weathering (or optical maturation); a process by which a materials optical properties are changed as a result of chemical and physical alterations at the surface of grains on airless bodies. Reddened slopes, attenuated absorption bands, and an overall reduction in albedo in the visible and near-IR wavelength ranges are primarily the result of native iron nanoparticle (npFe0) production within glassy rims that form from sputtering and vaporization. The sizes and abundance of these particles provide information about the relative surface exposure age of a particular grain. In addition, many studies have indicated that composition greatly affects the rate at which optical maturation occurs. Despite our understanding of how npFe0 affects optical signatures, the relative roles of micrometeoroid bombardment and solar wind interactions remains undetermined. To simulate the early effects of weathering by the solar wind and to determine thresholds for optical change with respect to a given mineral phase, we irradiated a fine-grained lunar basalt with 1 keV H+ to a fluence of 6.4 x 1016 H+ per sq.cm. Surface alterations within four phases have been evaluated using transmission electron microscopy (TEM). We found that for a given fluence of H+, the extent of damage acquired by each grain was dependent on its composition. No npFe(0) was produced in any of the phases evaluated in this study. These results are consistent with many previous studies conducted using ions of similar energy, but they also provide valuable information about the onset of space weathering and the role of the solar wind during the early stages of optical maturation

    A Review of Landscape Water Requirements Using a Multicomponent Landscape Coefficient

    Get PDF
    Water requirements of landscapes are highly variable due to the heterogeneous natures of landscapes, vegetation types, influence of buildings, and nutrient and water management. Objectives for water management of landscapes are for general appearance and health rather than for maximum biomass production. A multi-component method developed for the Irrigation Association (IA) and extended from the California WUCOLS procedure is demonstrated in which the landscape coefficient (KL, equivalent to a crop coefficient) is broken down into four components: vegetation type, vegetation density, microclimate, and managed stress. Each of these components can be estimated using readily made descriptions of a landscaped area and management objectives. One form of the KL equation is used to determine target KL that incorporates a target amount of soil water stress to support water conservation and to support water planning studies. A second form of the KL equation can be used to estimate the actual KL occurring under actual water management. The second form is used in studies of water balances and actual water conservation. The general decoupled equation is further expanded to optionally incorporate impacts of evaporation from exposed soil to assess impacts of irrigation frequency on total water consumption. The mathematics for the approach can be incorporated into software applications and smart irrigation controllers to produce improved water consumption estimates for landscape water requirements for use in irrigation scheduling, water requirement planning, and water depletion studies. The simplified procedure for estimating landscape water requirements in ASABE Standard S623 that is complementary to the IA procedure is discussed and compared. Both methods use a vegetation type and density system as the basis for efficiently estimating scientifically accurate landscape water requirements

    No Accession-Specific Effect of Rhizosphere Soil Communities on the Growth and Competition of Arabidopsis thaliana Accessions

    Get PDF
    Soil communities associated with specific plant species affect individual plants' growth and competitive ability. Limited evidence suggests that unique soil communities can also differentially influence growth and competition at the ecotype level. Previous work with Arabidopsis thaliana has shown that accessions produce distinct and reproducible rhizosphere bacterial communities, with significant differences in both species composition and relative abundance. We tested the hypothesis that soil communities uniquely affect the growth and reproduction of the plant accessions with which they are associated. Specifically, we examined the growth of four accessions when exposed to their own soil communities and the communities generated by each of the other three accessions. To do this we planted focal accessions inside a ring of six plants that created a “background” soil community. We grew focal plants in this design in three separate soil treatments: non-sterile soil, sterilized soil, and “preconditioned” soil. We preconditioned soil by growing accessions in non-sterile soil for six weeks before the start of the experiment. The main experiment was harvested after seven weeks of growth and we recorded height, silique number, and dry weight of each focal plant. Plants grown in the preconditioned soil treatment showed less growth relative to the non-sterile and sterile soil treatments. In addition, plants in the sterile soil grew larger than those in non-sterile soil. However, we saw no interaction between soil treatment and background accession. We conclude that the soil communities have a negative net impact on Arabidopsis thaliana growth, and that the unique soil communities associated with each accession do not differentially affect growth and competition of study species

    Special issue, work on demand : editorial introduction

    Get PDF
    No abstract available

    Tumour inflammatory infiltrate predicts survival following curative resection for node-negative colorectal cancer

    Get PDF
    <b>Background</b>: A pronounced tumour inflammatory infiltrate is known to confer a good outcome in colorectal cancer. Klintrup and colleagues reported a structured assessment of the inflammatory reaction at the invasive margin scoring low grade or high grade. The aim of the present study was to examine the prognostic value of tumour inflammatory infiltrate in node-negative colorectal cancer. <b>Methods</b>: Two hundred patients had undergone surgery for node-negative colorectal cancer between 1997 and 2004. Specimens were scored with Jass’ and Klintrup’s criteria for peritumoural infiltrate. Pathological data were taken from the reports at that time. <b>Results</b>: Low-grade inflammatory infiltrate assessed using Klintrup’s criteria was an independent prognostic factor in node-negative disease. In patients with a low-risk Petersen Index (n = 179), low-grade infiltrate carried a threefold increased risk of cancer death. Low-grade infiltrate was related to increasing T stage and an infiltrating margin. <b>Conclusion</b>: Assessment of inflammatory infiltrate using Klintrup’s criteria provides independent prognostic information on node-negative colorectal cancer. A high-grade local inflammatory response may represent effective host immune responses impeding tumour growth

    Reconstruction of the spin state

    Get PDF
    System of 1/2 spin particles is observed repeatedly using Stern-Gerlach apparatuses with rotated orientations. Synthesis of such non-commuting observables is analyzed using maximum likelihood estimation as an example of quantum state reconstruction. Repeated incompatible observations represent a new generalized measurement. This idealized scheme will serve for analysis of future experiments in neutron and quantum optics.Comment: 4 pages, 1 figur
    • …
    corecore