research

Internal convective cooling systems for hypersonic aircraft

Abstract

Parametric studies were conducted to investigate the relative merits of construction materials, coolants, and cooled panel concepts for internal convective cooling systems applied to airframe structures of hydrogen-fueled hypersonic aircraft. These parametric studies were then used as a means of comparing various cooled structural arrangements for a hypersonic transport and a hypersonic research airplane. The cooled airplane studies emphasized weight aspects as related to the choice of materials, structural arrangements, structural temperatures, and matching of the cooling system heat load to the available hydrogen fuel-flow heat sink. Consideration was given to reliability and to fatigue and fracture aspects, as well. Even when auxiliary thermal protection system items such as heat shielding, insulation, and excess hydrogen for cooling are considered the more attractive actively cooled airframe concepts indicated potential payload increases of from 40 percent to over 100 percent for the hypersonic transport as compared to the results of previous studies of the same vehicle configuration with an uncooled airframe

    Similar works