79 research outputs found

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    The turn of the valve: representing with material models

    Get PDF
    Many scientific models are representations. Building on Goodman and Elgin’s notion of representation-as we analyse what this claim involves by providing a general definition of what makes something a scientific model, and formulating a novel account of how they represent. We call the result the DEKI account of representation, which offers a complex kind of representation involving an interplay of, denotation, exemplification, keying up of properties, and imputation. Throughout we focus on material models, and we illustrate our claims with the Phillips-Newlyn machine. In the conclusion we suggest that, mutatis mutandis, the DEKI account can be carried over to other kinds of models, notably fictional and mathematical models

    Structured lifestyle education for people with Schizophrenia (STEPWISE) : mixed methods process evaluation of a group-based lifestyle education programme to support weight loss in people with schizophrenia

    Get PDF
    Background STEPWISE is a theory-informed self-management education programme that was co-produced with service users, healthcare professionals and interventionists to support weight loss for people with schizophrenia. We report the process evaluation to inform understanding about the intervention and its effectiveness in a randomised controlled trial (RCT) that evaluated its efficacy. Methods Following the UK Medical Research Council (MRC) Guidelines for developing and evaluating complex interventions, we explored implementation quality. We considered causal mechanisms, unanticipated consequences and contextual factors associated with variation in actual and intended outcomes, and integrated treatment fidelity, using the programme theory and a pipeline logic model. We followed a modified version of Linnan and Steckler’s framework and single case design. Qualitative data from semi-structured telephone interviews with service-users (n = 24), healthcare professionals delivering the intervention (n = 20) and interventionists (n = 7) were triangulated with quantitative process and RCT outcome data and with observations by interventionists, to examine convergence within logic model components. Results Training and course materials were available although lacked co-ordination in some trusts. Healthcare professionals gained knowledge and some contemplated changing their practice to reflect the (facilitative) ‘style’ of delivery. They were often responsible for administrative activities increasing the burden of delivery. Healthcare professionals recognised the need to address antipsychotic-induced weight gain and reported potential value from the intervention (subject to the RCT results). However, some doubted senior management commitment and sustainability post-trial. Service-users found the intervention highly acceptable, especially being in a group of people with similar experiences. Service-users perceived weight loss and lifestyle benefits; however, session attendance varied with 23% (n = 47) attending all group-sessions and 17% (n = 36) attending none. Service-users who lost weight wanted closer monitoring and many healthcare professionals wanted to monitor outcomes (e.g. weight) but it was outside the intervention design. No clinical or cost benefit was demonstrated from the intermediate outcomes (RCT) and any changes in RCT outcomes were not due to the intervention. Conclusions This process evaluation provides a greater understanding of why STEPWISE was unsuccessful in promoting weight loss during the clinical trial. Further research is required to evaluate whether different levels of contact and objective monitoring can support people with schizophrenia to lose weight

    Infinitesimal Idealization, Easy Road Nominalism, and Fractional Quantum Statistics

    Get PDF
    It has been recently debated whether there exists a so-called “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to easy road nominalism, thereby partially defending Mark Colyvan’s claim that there is no easy road to nominalism

    Spatiotemporal scaling of North American continental interior wetlands: implications for shorebird conservation

    Get PDF
    Within interior North America, erratic weather patterns and heterogeneous wetland complexes cause wide spatio-temporal variation in the resources available to migrating shorebirds. Identifying the pattern-generating components of landscape-level resources and the scales at which shorebirds respond to these patterns will better facilitate conservation efforts for these species. We constructed descriptive models that identified weather variables associated with creating the spatio-temporal patterns of shorebird habitat in ten landscapes in north-central Oklahoma. We developed a metric capable of measuring the dynamic composition and configuration of shorebird habitat in the region and used field data to empirically estimate the spatial scale at which shorebirds respond to the amount and configuration of habitat. Precipitation, temperature, solar radiation and wind speed best explained the incidence of wetland habitat, but relationships varied among wetland types. Shorebird occurrence patterns were best explained by habitat density estimates at a 1.5 km scale. This model correctly classified 86 % of shorebird observations. At this scale, when habitat density was low, shorebirds occurred in 5 % of surveyed habitat patches but occurrence reached 60 % when habitat density was high. Our results suggest scale dependence in the habitat-use patterns of migratory shorebirds. We discuss potential implications of our results and how integrating this information into conservation efforts may improve conservation strategies and management practices

    On the Mathematical Constitution and Explanation of Physical Facts

    Get PDF
    The mathematical nature of modern physics suggests that mathematics is bound to play some role in explaining physical reality. Yet, there is an ongoing controversy about the prospects of mathematical explanations of physical facts and their nature. A common view has it that mathematics provides a rich and indispensable language for representing physical reality but that, ontologically, physical facts are not mathematical and, accordingly, mathematical facts cannot really explain physical facts. In what follows, I challenge this common view. I argue that, in addition to its representational role, in modern physics mathematics is constitutive of the physical. Granted the mathematical constitution of the physical, I propose an account of explanation in which mathematical frameworks, structures, and facts explain physical facts. In this account, mathematical explanations of physical facts are either species of physical explanations of physical facts in which the mathematical constitution of some physical facts in the explanans are highlighted, or simply explanations in which the mathematical constitution of physical facts are highlighted. In highlighting the mathematical constitution of physical facts, mathematical explanations of physical facts deepen and increase the scope of the understanding of the explained physical facts. I argue that, unlike other accounts of mathematical explanations of physical facts, the proposed account is not subject to the objection that mathematics only represents the physical facts that actually do the explanation. I conclude by briefly considering the implications that the mathematical constitution of the physical has for the question of the unreasonable effectiveness of the use of mathematics in physics

    Diabetic ketoacidosis

    Get PDF
    Diabetic ketoacidosis (DKA) is the most common acute hyperglycaemic emergency in people with diabetes mellitus. A diagnosis of DKA is confirmed when all of the three criteria are present — ‘D’, either elevated blood glucose levels or a family history of diabetes mellitus; ‘K’, the presence of high urinary or blood ketoacids; and ‘A’, a high anion gap metabolic acidosis. Early diagnosis and management are paramount to improve patient outcomes. The mainstays of treatment include restoration of circulating volume, insulin therapy, electrolyte replacement and treatment of any underlying precipitating event. Without optimal treatment, DKA remains a condition with appreciable, although largely preventable, morbidity and mortality. In this Primer, we discuss the epidemiology, pathogenesis, risk factors and diagnosis of DKA and provide practical recommendations for the management of DKA in adults and children
    • 

    corecore