27 research outputs found

    Predictors Of Positivity Of [F-18]F-Choline PET-CT In Prostate Cancer Recurrence. Preliminary Results

    Get PDF
    EP-173 Aim/Introduction: To analyze the validity of [18F]F-Choline PET-CT results in prostate cancer recurrence in our daily practice, based on theoretical cut-off points of prostatespecific antigen (PSA), its kinetic, and PSA doubling time (PSADT), to identify predictors of positivity and modify the indication criteria. Materials and Methods: Prior to the validity analysis, a descriptive, prospective analysis of consecutive patients with prostate cancer treated with curative intent by radical prostatectomy (RP) or radiotherapy (RT), who underwent PET-CT scan with recurrence criteria: PSA =1 or PSA 0.4-1 with PSADT Nadir + 2 after RT, was performed. Results: From April to December 2019, 69 patients were included, 40 were treated with RP (58%) and 29 with RT (42%). In 45 patients (65%) PET-CT was able to identify recurrence of the disease (positive PET) and in 24 it was not (negative PET). Of patients treated with RP, 82, 5% (33/40) had PSA>1, and of those, 61% were positive PET. 17, 5% (7/40) had PSA6months (28/69), in 71% if PSADT6 months, in 61% and 92% if PSADT<6 months and in 77% and 100% if PSADT<3 months. Conclusion: Preliminarily and awaiting validation, it seems that PSA>1 after RP or Nadir +2 after RT is an indicator of PET-CT. There seems to be a tendency that shows that PSA<1 after RP is an indicator of PET-CT if PSADT<3 months. PSADT <3 or <6 months could be the best predictor of positivity of PET-CT with [18F]F-Choline in recurrent prostate cancer

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate

    No full text
    The “hierarchy of factors” hypothesis states that decomposition rates are controlled primarily by climatic, followed by biological and soil variables. Tropical montane forests (TMF) are globally important ecosystems, yet there have been limited efforts to provide a biome-scale characterization of litter decomposition. We designed a common litter decomposition experiment replicated in 23 tropical montane sites across the Americas, Asia, and Africa and combined these results with a previous study of 23 sites in tropical lowland forests (TLF). Specifically, we investigated (1) spatial heterogeneity in decomposition, (2) the relative importance of biological factors that affect leaf and wood decomposition in TMF, and (3) the role of climate in determining leaf litter decomposition rates within and across the TMF and TLF biomes. Litterbags of two mesh sizes containing Laurus nobilis leaves or birchwood popsicle sticks were spatially dispersed and incubated in TMF sites, for 3 and 7 months on the soil surface and at 10–15 cm depth. The within-site replication demonstrated spatial variability in mass loss. Within TMF, litter type was the predominant biological factor influencing decomposition (leaves > wood), with mesh and burial effects playing a minor role. When comparing across TMF and TLF, climate was the predominant control over decomposition, but the Yasso07 global model (based on mean annual temperature and precipitation) only modestly predicted decomposition rate. Differences in controlling factors between biomes suggest that TMF, with their high rates of carbon storage, must be explicitly considered when developing theory and models to elucidate carbon cycling rates in the tropics.Fil: Ostertag, Rebecca. University of Hawaii at Manoa; Estados UnidosFil: Restrepo, Carla. Universidad de Puerto Rico; Puerto RicoFil: Dalling, James W.. University of Illinois at Urbana; Estados UnidosFil: Martin, Patrick H.. University of Denver.; Estados UnidosFil: Abiem, Iveren. No especifíca;Fil: Aiba, Shinichiro. Hokkaido University; JapónFil: Alvarez Dávila, Esteban. No especifíca;Fil: Aragón, Myriam Roxana. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Ataroff, Michelle. Universidad de los Andes; ColombiaFil: Chapman, Hazel. University of Canterbury; Nueva ZelandaFil: Cueva Agila, Augusta Y.. Pontificia Universidad Católica del Ecuador; EcuadorFil: Fadrique, Belen. University of Leeds; Reino UnidoFil: Fernandez, Romina Daiana. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: González, Grizelle. No especifíca;Fil: Gotsch, Sybil G.. No especifíca;Fil: Poma López, Laura Nohemy. Universidad Nacional de Loja; EcuadorFil: Tobón, Conrado. Universidad Nacional de Colombia; ColombiaFil: Williams, Cameron B.. No especifíca

    Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes

    Get PDF
    Abstract Glaucoma is characterized by a progressive loss of retinal ganglion cells and their axons, but the underlying biological basis for the accompanying neurodegeneration is not known. Accumulating evidence indicates that structural and functional abnormalities of astrocytes within the optic nerve head (ONH) have a role. However, whether the activation of cyclic adenosine 3′,5′-monophosphate (cAMP) signaling pathway is associated with astrocyte dysfunction in the ONH remains unknown. We report here that the cAMP/protein kinase A (PKA) pathway is critical to ONH astrocyte dysfunction, leading to caspase-3 activation and cell death via the AKT/Bim/Bax signaling pathway. Furthermore, elevated intracellular cAMP exacerbates vulnerability to oxidative stress in ONH astrocytes, and this may contribute to axonal damage in glaucomatous neurodegeneration. Inhibition of intracellular cAMP/PKA signaling activation protects ONH astrocytes by increasing AKT phosphorylation against oxidative stress. These results strongly indicate that activation of cAMP/PKA pathway has an important role in astrocyte dysfunction, and suggest that modulating cAMP/PKA pathway has therapeutic potential for glaucomatous ONH degeneration
    corecore