220 research outputs found

    Immunotherapy and its development for gynecological (Ovarian, endometrial and cervical) tumors: From immune checkpoint inhibitors to chimeric antigen receptor (car)-T cell therapy

    Get PDF
    Gynecological tumors are malignancies with both high morbidity and mortality. To date, only a few chemotherapeutic agents have shown efficacy against these cancer types (only ovarian cancer responds to several agents, especially platinum-based combinations). Within this context, the discovery of immune checkpoint inhibitors has led to numerous clinical studies being carried out that have also demonstrated their activity in these cancer types. More recently, following the development of chimeric antigen receptor (CAR)-T cell therapy in hematological malignancies, this strategy was also tested in solid tumors, including gynecological cancers. In this article, we focus on the molecular basis of gynecological tumors that makes them potential candidates for immunotherapy. We also provide an overview of the main immunotherapy studies divided by tumor type and report on CAR technology and the studies currently underway in the area of gynecological malignancies

    Translation, cross-cultural adaptation, and validation of the Italian version of the anterior cruciate ligament–return to sport after injury (ACL-RSI) scale and its integration into the K-STARTS test

    Get PDF
    Background: The timing of a return to sport (RTS) after anterior cruciate ligament reconstruction (ACLR) represents a major subject of debate in sports medicine practice. Recently, the Knee Santy Athletic Return to Sport (K‐STARTS) composite test was validated. This consists of a battery of physical tests and a psychological evaluation using the anterior cruciate ligament–return to sport after injury scale (ACL‐RSI). This study aimed to translate the ACL‐RSI and K‐STARTS from English to Italian and determine the scale’s reliability and validity in an Italian context. Methods: The translation and cultural adaptation process was performed according to the guidelines for the cross‐ cultural adaptation of self‐report measures. The patients were asked to fill an anonymized online form created for this purpose that included the KOOS, the Lysholm, the IKDC‐SKF, and the Italian translation of the ACL‐RSI (ACL‐RSI‐It). After 1 week, the attendees were asked to repeat the ACL‐RSI‐It to investigate the test–retest reliability. Results: The final study population comprised 115 patients who underwent ACLR, with a mean follow‐up of 37.37 ± 26.56 months. The ACL‐RSI‐It showed axcellent internal consistency (Cronbach’s α = 0.963), reliability (test– retest ICC = 0.966), and good construct validity (positive correlations with the other scales were above 75%). Conclusions: The ACL‐RSI‐It is valid, reliable, and comparable to the original English version of the questionnaire for Italian‐speaking patients. It can be used to assess the psychological readiness of patients for a RTS after primary and unilateral ACLR, and can be integrated into the Italian K‐STARTS test

    Circulating tumor cell gene expression and plasma AR gene copy number as biomarkers for castration-resistant prostate cancer patients treated with cabazitaxel

    Get PDF
    Background: Cabazitaxel improves overall survival (OS) in metastatic castration-resistant prostate cancer (mCRPC) patients progressing after docetaxel. In this prospective study, we evaluated the prognostic role of CTC gene expression on cabazitaxel-treated patients and its association with plasma androgen receptor (AR) copy number (CN). Methods: Patients receiving cabazitaxel 20 or 25 mg/sqm for mCRPC were enrolled. Digital PCR was performed to assess plasma AR CN status. CTC enrichment was assessed using the AdnaTest EMT-2/StemCell kit. CTC expression analyses were performed for 17 genes. Data are expressed as hazard ratio (HR) or odds ratio (OR) and 95% CI. Results: Seventy-four patients were fully evaluable. CTC expression of AR-V7 (HR=2.52, 1.24–5.12, p=0.011), AKR1C3 (HR=2.01, 1.06–3.81, p=0.031), AR (HR=2.70, 1.46–5.01, p=0.002), EPCAM (HR=3.75, 2.10–6.71, p< 0.0001), PSMA (HR=2.09, 1.19–3.66, p=0.01), MDK (HR=3.35, 1.83–6.13, p< 0.0001), and HPRT1 (HR=2.46, 1.44–4.18, p=0.0009) was significantly associated with OS. ALDH1 (OR=5.50, 0.97–31.22, p=0.05), AR (OR=8.71, 2.32–32.25, p=0.001), EPCAM (OR=7.26, 1.47–35.73, p=0.015), PSMA (OR=3.86, 1.10–13.50, p=0.035), MDK (OR=6.84, 1.87–24.98, p=0.004), and HPRT1 (OR=7.41, 1.82–30.19, p=0.005) expression was associated with early PD. AR CN status was significantly correlated with AR-V7 (p=0.05), EPCAM (p=0.02), and MDK (p=0.002) expression. In multivariable model, EPCAM and HPRT1 CTC expression, plasma AR CN gain, ECOG PS=2, and liver metastases and PSA were independently associated with poorer OS. In patients treated with cabazitaxel 20 mg/sqm, median OS was shorter in AR-V7 positive than negative patients (6.6 versus 14 months, HR=3.46, 1.47–8.17], p=0.004). Conclusions: Baseline CTC biomarkers may be prognosticators for cabazitaxel-treated mCRPC patients. Cabazitaxel at lower (20 mg/sqm) dose was associated with poorer outcomes in AR-V7 positive patients compared to AR-V7 negative patients in a post hoc subgroup analysis. Trial registration: Clinicaltrials.govNCT03381326. Retrospectively registered on 18 December 2017

    Potential Application of Chimeric Antigen Receptor (CAR)-T Cell Therapy in Renal Cell Tumors

    Get PDF
    Currently, renal cell carcinoma is characterized by encouraging benefits from immunotherapy that have led to significant results in treatment outcome. The approval of nivolumab primarily as second-line monotherapy and, more recently, the approval of new combination therapies as first-line treatment have confirmed the importance of immunotherapy in this type of tumor. In this context, the chimeric antigen receptor (CAR)-T represents a further step forward in the field of immunotherapy. Initially tested on hematological malignancies, this new therapeutic approach is also becoming a topic of great interest for solid tumors. Although the treatment has several advantages over previous T-cell receptor-dependent immunotherapy, it is facing some obstacles in solid tumors such as a hostile tumor microenvironment and on-tumor/off-tumor toxicities. Several strategies are under investigation to overcome these problems, but the approval of CAR-T cell therapy is still some way off. In renal cancer, the significant advantages obtained from immune checkpoint inhibitors represent a good starting point, but the potential nephrological toxicity of CAR-T cell therapy represents an important risk. In this review, we provide the rationale and preliminary results of CAR-T cell therapy in renal cell malignancies

    Circulating AR copy number and outcome to enzalutamide in docetaxel-treated metastatic castration-resistant prostate cancer

    Get PDF
    In the present study, we aimed to evaluate the association of circulating AR copy number (CN) and outcome in a cohort of patients with advanced castration-resistant prostate cancer (CRPC) treated with enzalutamide after docetaxel. Fifty-nine CRPC patients were evaluated. AR CN was analyzed with real-time and digital PCR in the serum collected at starting of treatment. Progressive disease was defined on the basis of Prostate Cancer Working Group 2 criteria. AR CN gain was found in 21 of 59 (36%) patients. Median baseline PSA, alkaline phosphatase and lactate dehydrogenase levels were higher in the AR CN gained group (p = 0.007, p = 0.003, p = 0.0009, respectively). Median PFS of patients with AR CN gain was 2.4 (95%CI: 1.9-3.2) vs. 4.0 months (95%CI: 3.0-6.5) of those with no gain (p = 0.0004). Median OS of patients with AR CN gain was 6.1 (95%CI: 3.4-8.6) vs. 14.1 months (95%CI: 8.2-20.5) of those with no gain (p = 0.0003). At multivariate analysis, PSA decline ≄ 50% and AR CN showed a significant association with PFS (p = 0.008 and p = 0.002, respectively) and OS (p = 0.009 and p = 0.001, respectively). These findings indicate that the detection of circulating AR CN gain is a promising non-invasive biomarker for outcome prediction to enzalutamide treatment in CRPC patients

    Identification of single nucleotide variants using position-specific error estimation in deep sequencing data

    Get PDF
    Background Targeted deep sequencing is a highly effective technology to identify known and novel single nucleotide variants (SNVs) with many applications in translational medicine, disease monitoring and cancer profiling. However, identification of SNVs using deep sequencing data is a challenging computational problem as different sequencing artifacts limit the analytical sensitivity of SNV detection, especially at low variant allele frequencies (VAFs). Methods To address the problem of relatively high noise levels in amplicon-based deep sequencing data (e.g. with the Ion AmpliSeq technology) in the context of SNV calling, we have developed a new bioinformatics tool called AmpliSolve. AmpliSolve uses a set of normal samples to model position-specific, strand-specific and nucleotide-specific background artifacts (noise), and deploys a Poisson model-based statistical framework for SNV detection. Results Our tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off between precision and sensitivity, even at VAF below 5% and as low as 1%. We further validate AmpliSolve by applying it to the detection of SNVs in 96 circulating tumor DNA samples at three clinically relevant genomic positions and compare the results to digital droplet PCR experiments. Conclusions AmpliSolve is a new tool for in-silico estimation of background noise and for detection of low frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been specifically designed for and tested on amplicon-based libraries sequenced with the Ion Torrent platform it can, in principle, be applied to other sequencing platforms as well. AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve

    Identification of single nucleotide variants using position-specific error estimation in deep sequencing data.

    Get PDF
    Background Targeted deep sequencing is a highly effective technology to identify known and novel single nucleotide variants (SNVs) with many applications in translational medicine, disease monitoring and cancer profiling. However, identification of SNVs using deep sequencing data is a challenging computational problem as different sequencing artifacts limit the analytical sensitivity of SNV detection, especially at low variant allele frequencies (VAFs).Methods To address the problem of relatively high noise levels in amplicon-based deep sequencing data (e.g. with the Ion AmpliSeq technology) in the context of SNV calling, we have developed a new bioinformatics tool called AmpliSolve. AmpliSolve uses a set of normal samples to model position-specific, strand-specific and nucleotide-specific background artifacts (noise), and deploys a Poisson model-based statistical framework for SNV detection.Results Our tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off between precision and sensitivity, even at VAF below 5% and as low as 1%. We further validate AmpliSolve by applying it to the detection of SNVs in 96 circulating tumor DNA samples at three clinically relevant genomic positions and compare the results to digital droplet PCR experiments.Conclusions AmpliSolve is a new tool for in-silico estimation of background noise and for detection of low frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been specifically designed for and tested on amplicon-based libraries sequenced with the Ion Torrent platform it can, in principle, be applied to other sequencing platforms as well. AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve

    Identification of single nucleotide variants using position-specific error estimation in deep sequencing data

    Get PDF
    BACKGROUND: Targeted deep sequencing is a highly effective technology to identify known and novel single nucleotide variants (SNVs) with many applications in translational medicine, disease monitoring and cancer profiling. However, identification of SNVs using deep sequencing data is a challenging computational problem as different sequencing artifacts limit the analytical sensitivity of SNV detection, especially at low variant allele frequencies (VAFs). METHODS: To address the problem of relatively high noise levels in amplicon-based deep sequencing data (e.g. with the Ion AmpliSeq technology) in the context of SNV calling, we have developed a new bioinformatics tool called AmpliSolve. AmpliSolve uses a set of normal samples to model position-specific, strand-specific and nucleotide-specific background artifacts (noise), and deploys a Poisson model-based statistical framework for SNV detection. RESULTS: Our tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off between precision and sensitivity, even at VAF below 5% and as low as 1%. We further validate AmpliSolve by applying it to the detection of SNVs in 96 circulating tumor DNA samples at three clinically relevant genomic positions and compare the results to digital droplet PCR experiments. CONCLUSIONS: AmpliSolve is a new tool for in-silico estimation of background noise and for detection of low frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been specifically designed for and tested on amplicon-based libraries sequenced with the Ion Torrent platform it can, in principle, be applied to other sequencing platforms as well. AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve

    The Geriatric G8 Score Is Associated with Survival Outcomes in Older Patients with Advanced Prostate Cancer in the ADHERE Prospective Study of the Meet-URO Network

    Get PDF
    Introduction: Androgen receptor pathway inhibitors (ARPIs) have been increasingly offered to older patients with prostate cancer (PC). However, prognostic factors relevant to their outcome with ARPIs are still little investigated. Methods and Materials: The Meet-URO network ADHERE was a prospective multicentre observational cohort study evaluating and monitoring adherence to ARPIs metastatic castrate-resistant PC (mCRPC) patients aged ≄70. Cox regression univariable and multivariable analyses for radiographic progression-free (rPFS) and overall survival (OS) were performed. Unsupervised median values and literature-based thresholds where available were used as cut-offs for quantitative variables. Results: Overall, 234 patients were enrolled with a median age of 78 years (73–82); 86 were treated with abiraterone (ABI) and 148 with enzalutamide (ENZ). With a median follow-up of 15.4 months (mo.), the median rPFS was 26.0 mo. (95% CI, 22.8–29.3) and OS 48.8 mo. (95% CI, 36.8–60.8). At the MVA, independent prognostic factors for both worse rPFS and OS were Geriatric G8 assessment ≀ 14 (p < 0.001 and p = 0.004) and PSA decline ≄50% (p < 0.001 for both); time to castration resistance ≄ 31 mo. and setting of treatment (i.e., post-ABI/ENZ) for rPFS only (p < 0.001 and p = 0.01, respectively); age ≄78 years for OS only (p = 0.008). Conclusions: Baseline G8 screening is recommended for mCRPC patients aged ≄70 to optimise ARPIs in vulnerable individuals, including early introduction of palliative care
    • 

    corecore