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Currently, renal cell carcinoma is characterized by encouraging benefits from
immunotherapy that have led to significant results in treatment outcome. The approval
of nivolumab primarily as second-line monotherapy and, more recently, the approval
of new combination therapies as first-line treatment have confirmed the importance
of immunotherapy in this type of tumor. In this context, the chimeric antigen receptor
(CAR)-T represents a further step forward in the field of immunotherapy. Initially tested
on hematological malignancies, this new therapeutic approach is also becoming a topic
of great interest for solid tumors. Although the treatment has several advantages over
previous T-cell receptor-dependent immunotherapy, it is facing some obstacles in solid
tumors such as a hostile tumor microenvironment and on-tumor/off-tumor toxicities.
Several strategies are under investigation to overcome these problems, but the approval
of CAR-T cell therapy is still some way off. In renal cancer, the significant advantages
obtained from immune checkpoint inhibitors represent a good starting point, but the
potential nephrological toxicity of CAR-T cell therapy represents an important risk. In
this review, we provide the rationale and preliminary results of CAR-T cell therapy in
renal cell malignancies.
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INTRODUCTION

Renal cell carcinoma (RCC) represents the 9th and 14th most common tumor worldwide in males
and females, respectively. Incidence rates are higher in Europe and the United States than in
Africa or South-Eastern Asia and are increasing in other countries especially in Latin America (1).
Epidemiological studies have demonstrated that smoking, chronic kidney diseases, hypertension,
and obesity are risk factors for RCC development (2). For decades, the only effective treatment
against RCC was surgery because of its well-known chemoresistance. The subsequent approval of
cytokines [interferon (IFN) and interleukin (IL)-2 (3)] and tyrosine kinase inhibitors (TKIs) led
to an advantage in survival in patients with metastatic disease (4–7) [>26 months using vascular
endothelial growth factor (VEGF) inhibitors (8)].
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The approval of TKIs minimized the use of cytokines due to
the differences in terms of survival and toxicity. Notwithstanding,
the concept that IL-2 induces an immune response against
tumor-mediated immune suppression (9) has, over the years,
focused our attention on the possibility that RCC may be
sensitive to immunological treatments. In recent years, the new
Immunotherapeutic Era has led to the approval of several drugs
for the treatment of urological tumors (including RCC) (3).
Nivolumab (10), nivolumab + ipilimumab (11), pembrolizumab
in combination with axitinib (12), and avelumab plus axitinib
(13) have demonstrated the most important advantages in RCC
in terms of survival and response with respect to TKIs (12–
14). However, these advantages were obtained most frequently
in two patient subgroups, defined as intermediate- and poor-
risk cohorts according to the International Metastatic Renal Cell
Carcinoma Database Consortium (IMDC). Research into the
molecular reasons for this gap among patient cohorts is currently
ongoing to drive clinical decisions.

More recently, the development of chimeric antigen receptors
(CARs) has led to a new modality of immunotherapy. The
astounding results in terms of responses demonstrated by
this strategy against hematological neoplasms have turned the
attention toward solid tumors, including RCC.

In this review, we will focus our attention on CAR-T cell
therapy in patients with RCC.

CARs: Structure and Function
Chimeric antigen receptor-T cells are T cells that are
genetically engineered to express antigen-specific, non-major
histocompatibility complex (MHC)-restricted receptors on their
membranes. They are classified into four generations based
on molecular complexity, all composed of different domains:
(1) a single-chain antibody fragment (scFV) located in the
extracellular part of the cell, representing the antigen-binding
region; (2) a hinge domain linked to a (3) transmembrane
region; and (4) an intracellular domain composed of the signal
transduction part of the T-cell receptor (TCR), called the
cluster of differentiation (CD)3ζ, linked with one (second and
fourth CAR generations) or two (only third CAR generation)
costimulatory domains. Moreover, the fourth CAR-T generation,
also known as TRUCKs (T cells redirected for universal cytokine
killing), are CAR-T cells combined with immune stimulatory
molecules, such as cytokines [interleukin (IL)-12, IL-15, IL-18,
IL-7R), multiantigen-targeting combinations [human epidermal
growth factor receptor 2 (HER2), interleukin-13 receptor subunit
alpha-2 (IL-13Rα2), and ephrin-A2 (EphA2)], knock-in genes,
such as C-X-C chemokine receptor type 4 (CXCR4) and TCR α

constant (TRAC), knock-out genes, e.g., programmed death-1
(PD1) and diacylglycerol kinase (DGK), or controlled and
inducible systems, such as synthetic Notch receptor (Syn/Notch).
Given that TRUCKs present both costimulatory element and
proinflammatory factor, this characteristic increases T-cell
efficacy with respect to previous CAR generations (Figure 1A).
Those molecules have several advantages over the previous
modalities of adoptive cell therapy, i.e., TCR and tumor-
infiltrating lymphocytes (TIL) (15, 16). First and foremost, their
immune activity is not MHC restricted because it is dependent

on a surface–antigen interaction. This difference is crucial in
treating tumors with low MHC expression, which, being TCR
or TIL resistant, may be sensitive to CAR-T cell therapy (9, 17).
Second, TCRs commonly have low antigen affinity, which can
lead to off-target toxicities (18). Third, CAR-T cells not only
have the antigen-binding activity of T cells (like monoclonal
antibodies) but also their lytic property (19).

The first results of CAR-T cell therapy were obtained in
hematological malignancies, where around 90% of complete
responses were obtained in CD19-positive B-acute lymphoblastic
leukemia. Conversely, only 26% of the patients with chronic
lymphoblastic leukemia benefited from CD19 CAR-T therapy
(20). This discrepancy seems to be related to the development
of T-cell exhaustion induced by coinhibitory pathways. This
exhaustion is, in turn, the cause of poor T-cell expansion and
short-term persistence of T cells (21). In fact, by analyzing
CAR-T cells from non-responders, an upregulation was found
in pathways involved in exhaustion and apoptosis (22). In
CAR-T cells, expression levels of T-cell coinhibitory receptors,
e.g., PD-1, T-cell immunoglobulin and mucin domain-3 (Tim-
3), and lymphocyte activation gene-3 (LAG-3) were found to
be upregulated, probably to inhibit T-cell activity (23). For
these reasons, some studies were conducted combining CAR-
T cell therapy and immune checkpoint inhibitors (ICIs) in
hematological malignancies, with interesting results (24).

Challenges Facing the Use of CAR-T
Cells in Treating Solid Tumors
Chimeric antigen receptor-T cell therapies were initially
developed for the treatment of hematologic neoplasms but have
not shown the same efficacy in solid tumors. In the latter,
better results have been obtained from the use of TIL-dependent
immunotherapeutic agents. This discrepancy is due to several
conditions: (a) immune-mediated tumor antigen selection, which
can improve the proliferation of tumor cells whose membrane
does not express that specific target (25); (b) poor intra- and
peritumoral trafficking (26); (c) limited CAR-T persistence in
the host (27, 28). Little is also known about potential surrogate
markers of T-cell persistence. One study on RCC patients
demonstrated a correlation between CAR-T persistence and
IFN-γ and IL-6, whereas the same correlation was not shown
in relation to CAR-T toxicities (29); (d) CAR-T destruction
mediated by the hostile tumor microenvironment (30); and (e)
absence of a cancer-specific antigen in several tumor types that
is suitable for inclusion in the CAR structure (31). This relative
aspecificity may increase the risk of immune-related toxicity, as
recently reported in literature (31–34).

CAR-T-Related Toxicities
Several CAR-T-related toxicities have been reported. In
particular, this therapy may induce severe toxicities, potentially
affecting kidney function, including cytokine release syndrome
(CRS), acute kidney injury (AKI), and tumor lysis syndrome
(TLS). These toxicities are of primary importance for all
cancer patients, especially for RCC patients, who have often
undergone nephrectomy.
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FIGURE 1 | Fourth-generation chimeric antigen receptor (CAR) and main solutions to CAR toxicity. (A) The fourth-generation CAR structure. (B,C) CAR-related
solutions. (D) Non-CAR-related solutions. (E) Coupled CAR. (A) The fourth CAR-T generation, also known as TRUCKs (T cells redirected for universal cytokine
killing), is a CAR-T cell combined with immune stimulatory molecules such as cytokines [interleukin (IL)-12, IL-15, IL-18, IL-7R], multiantigen-targeting combinations
[human epidermal growth factor receptor 2 (HER2), interleukin-13 receptor subunit alpha-2 (IL13Rα2), ephrin-A2 (EphA2)], knock-in genes (CXCR4, TRAC) and
knock-out genes (PD1, DGK), or controlled and inducible systems (Syn/Notch). (B) “Synthetic Notch receptor”: the single-chain antibody fragment (scFV),
connected with a Notch receptor fragment, is cleaved after antigen binding, allowing the intracellular domain to drive the expression of a second tumor antigen. This
option improves tumor specificity of the CAR-T cells. Its double specificity controls off-tumor toxicities by depleting transferred cells or increasing specificity against
tumor targets. (C) In “switchable CARs,” the use of adaptor molecules represents a tool to modulate CAR activation and longevity. The CAR molecule only binds a
neoepitope, promoting T-cell activity after antibody–antigen binding. (D) The insertion of a truncated form of caspase-9 (iCasp9) with a binding domain specific for a
“dimerizer” molecule could lead to a dimerization-related T-cell destruction in around 30 min. (E) Combination of a stimulatory CAR and an inhibitory CAR: the latter
contains an intracellular domain with an immune checkpoint molecule (CTLA4 or PD1). In the event of contact with a normal tissue antigen, the inhibitory CAR
irreversibly blocks T-cell activity.

Several trials on hematological malignancies reported that
CRS occurred in 40–50% of the patients. Its characteristic signs
were that of hyperpyrexia for about a week followed by organ
dysfunction (with cardiac failure in around 25% of the cases);
high levels of C-reactive protein (>20 mg/dl) and ferritin;
and hypotension, hypoxia, and neurologic symptoms, such as
obtundation and seizures (35). This problem is related to higher
levels of IL-6, which determines vasodilation, hypotension,
hypoperfusion and, consequently, AKI. The fundamental role
of IL-6 in the development of this syndrome has also been
confirmed by the fact that the use of the anti-IL-6 receptor
antibody tocilizumab restored organ function in several cases
(36) in whom an alteration in electrolyte levels was frequently
observed. However, it is still not clear whether this was directly
due to CAR-T cell therapy or CLS.

Tumor lysis syndrome, another syndrome potentially related
to the use of CAR-T cell therapy, is characterized by an elevation

of lactate dehydrogenase and uric acid levels around 3 weeks after
CAR-T infusion (37).

Chimeric antigen receptor-T cell therapy can also cause
other non-renal adverse events, such as neurological and “on-
target/off-tumor” toxicity. The former, as previously stated, is
characterized by seizures, confusion, myoclonus, delirium, and
expressive aphasia. These symptoms have been reported in
patients specifically treated with a CD19-specific CAR-T, and
it is still not known whether they could be caused by other
antigen-specific treatments. Neurological toxicity is probably
related to CRS but may also be related to a central nervous
system-directed toxicity.

“On-target/off-tumor” toxicity is linked to antigen
engagement in non-cancer tissues. First demonstrated in
hematological malignancies, it has also been reported in solid
neoplasms, such as gastrointestinal and lung cancer. More
recently, the use of a carboxyanhydrase-IX (CAIX)-specific
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CAR-T cell for RCC caused the development of cholestasis
because of CAIX expression in biliary duct epithelium (38, 39).
This toxicity seems to be correlated with dosage, as shown in
cases of HER-2-specific CAR-T infusion: high doses have led to
patient death (33), but lower doses have proven safe (40).

Anaphylaxis and graft-versus-host disease are toxicities
described in CAR-T cell trials. The former is often due to the use
of murine domains in developing CAR molecules (36, 41). For the
latter, two types of strategies are being pursued to counteract the
potential alloreactivity linked to the infusion of non-host CAR-
T cells, CAR-transduced viral-specific cells and endogenous TCR
silencing (42–44).

Potential Solutions to Reduce CAR
Toxicity
As mentioned above, CAR-related toxicity represents an
important limit to the development of this strategy in solid
tumors, and several studies are ongoing to evaluate potential
solutions to the problem (45). These can be divided into
three groups: (1) CAR related, (2) non-CAR related, and
(3) coupled CARs.

The first group comprises studies exploring the possibility of
modifying the CAR structure to avoid toxicity. For example, it has
been demonstrated that designing a CAR with a reduced antigen
affinity in its scFV can spare normal tissues from immune-
mediated consequences (46–48). The same effect has been
achieved by modifying the extramembrane spacer length between
the scFV and the cellular membrane (18, 49). Another option
consists in the development of a “synthetic Notch receptor”: the
scFV, connected to a Notch receptor fragment, is cleaved after
antigen binding, allowing the intracellular domain to drive the
expression of a second tumor antigen. This option improves the
tumor specificity of CAR-T cells (49) (Figure 1B). Other options
included in this group are the development of “split CARs” in
which the CAR domains are only linked in the presence of a
small molecule with dimerizing activity and the development
of “switchable CARs” in which the CAR molecule only binds a
neoepitope that can activate T-cell activity after antibody–antigen
binding (50, 51) (Figure 1C).

The second group is composed of solutions not involving the
CAR structure but which act at different levels. For example,
some studies have inserted inducible suicide gene cassettes to
induce apoptosis in the T cell in cases of immune-related toxicity.
Two strategies have been tested: (a) the insertion of a truncated
form of caspase IX (iCasp9) with a binding domain specific
for a “dimerizer” molecule, which can lead to a dimerization-
related T-cell destruction in around 30 min (52) (Figure 1D) and
(b) the inclusion of the gene for herpes simplex virus tyrosine
kinase. In this case, the administration of ganciclovir can induce
T-cell apoptosis (53). Using a similar procedure, an “elimination
gene” can also be inserted, leading to antibody-mediated T-cell
destruction (in the event of toxicity) (54).

The third group is composed of studies evaluating the
possibility of using two CAR molecules with different functions:
(a) a combination of a CAR with an intracellular TCR portion,
while the stimulatory portions are located on the second

CAR. The T-cell immune activity can only start when both
CARs bind their antigen. Results, to date, have been somewhat
contradictory, and in one study this, procedure was also shown
to destroy healthy cells expressing only one antigen (52, 55); (b)
a combination of a stimulatory CAR and an inhibitory CAR: the
latter contains an intracellular domain for an immune checkpoint
molecule (CTLA4 or PD1). In the event of contact with a normal
tissue antigen, the inhibitory CAR blocks T-cell activity. This
block is reversible, and so T cells can be reactivated by another
tumor antigen (56) (Figure 1E).

Inflammation, CAR-T Treatment, and Its
Rationale in RCC
The role of immunotherapy has always been considered in RCC,
and this approach has obtained significant results from the IL-
2 era to the latest ICIs. The rationale for its efficacy lies in the
involvement of the immune system in RCC, and several studies
have investigated this correlation. Trials investigating the role of
ICIs in RCC patients demonstrated a >1% PD-L1 expression
ranging from 24% in the CheckMate-214 study (57) to 63.2%
in the JAVELIN Renal 101 study (13). In both trials, the overall
response rate (ORR) and survival (OS) were sharply in favor of
immunotherapy, especially in the presence of PD-L1 expression.
The JAVELIN Renal 101 study demonstrated a 55.2% ORR from
the combination of avelumab plus axitinib compared to 25.5%
from sunitinib (the data reported were only from PD-L1-positive
cases). Conversely, the combination of nivolumab + ipilimumab
in the CheckMate-214 study showed a 42% ORR compared to
26% in the sunitinib arm. In the same study, the immunotherapy
combination obtained a median OS gain of 20 months compared
to the sunitinib arm (47 versus 26.6 months, respectively) (58).

Both studies highlighted a difference between the IMDC
prognostic groups, showing that the intermediate- and high-risk
groups tended to benefit more from immunotherapy, contrary
to what happens in good prognosis cases, which appear to do
better with oral TKIs (58). Recently, McDermott et al. evaluated
the impact of immunotherapy according to the IMDC risk
criteria, selecting a heatmap of genes previously established as
angiogenesis-related and immune biology-related genes. They
identified subgroups with different biological features, the
differences based on the expression (high/low) of angiogenesis
(Angio), immune system (T effector), and myeloid inflammation-
associated genes. The subgroup expressing a high T-effector gene
signature responded best to immunotherapy, whereas the cases
with a high Angio signature benefited more from TKIs. Patients
with a high myeloid gene signature treated with immunotherapy
showed a poorer survival than those with a low expression of the
gene (59).

In parallel to this type of study, the correlation between
the immune system and RCC was also assessed from a
prognostic/predictive point of view. In the cytokine era,
absolute neutrophil count was considered as a prognostic factor
in a prognostic model for RCC validated by the Groupe
Francais d’Immunotherapie (60). Subsequently, several studies
validated the role of other inflammation parameters such as
neutrophil/lymphocyte ratio (NLR) (61), systemic inflammation
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index (SII) (62), and CRP (63) as independent prognostic factors
in RCC. With the discovery of inhibitory checkpoints, greater
attention was paid to more specific prognostic and predictive
markers. The PD1/PD-L1 axis is also the most widely studied
parameter in RCC. PD-L1 expression is known to be significantly
related to poor response to antiangiogenic treatments and has
shown an independent association with shorter survival in
stage IV RCC pretreated with VEGF–TKIs (64, 65). Overall,
PD-1, PD-L1, and PD-L2 expression is associated with poor
outcome in TKI-pretreated RCC patients (66). As mentioned
above, the most recent studies on ICI combinations as first-
line treatment reported better patient outcomes than those on
sunitinib in intermediate and poor prognostic groups, suggesting
a correlation between prognosis and “immuno-susceptibility” in
RCC patients (14).

Interest has recently been aroused in the role of inflammasome
complexes in solid tumors. These multimolecular complexes
are known for their ability to control the activation of
caspase-1, a proteolytic enzyme involved in the maturation of
proinflammatory cytokines (IL-1β and IL-18), and in inducing
inflammatory-like apoptosis (pyroptosis) against pathogens and
endogenous danger signals. In brief, inflammasome may play
a role in neoplastic development via the regulation of tumor
inflammation (67). Some studies on RCC have shown that
enhancing inflammasome activation blocks tumor proliferation,
promoting pyroptosis. Wang et al. demonstrated that the nuclear
receptor liver X receptor alpha (LXRα) is upregulated and
associated with a poor prognosis in RCC patients (68). In
fact, LXRα downregulates the NLRP3 inflammasome, leading to
metastatization. Tan et al. showed that tumor proliferation and
epithelial mesenchymal transition (EMT) in RCC patients are
inhibited by BRD4 inhibition (69). The authors demonstrated
that this molecule, an epigenetic reader, exerts an antitumor
effect by activating pyroptosis. Chai et al. reported that
absence in melanoma-2 (AIM-2), a tumor suppressor, influences
inflammasome activity in RCC (70).

Based on what has been reported so far, especially for the role
that the modulation of the immune system has always shown in
the treatment of renal neoplasms, it is clear that RCC represents
one of the most interesting test beds for the development of CAR-
T technology in solid tumors.

CAR-T Cell Therapy in RCC Patients:
Pros and Cons
At this point, a list of pros and cons can be compiled on
the development and subsequent use of this new therapeutic
approach in patients with RCC. It is undoubtedly an innovative
and interesting therapy because of its high response rates
obtained in hematological diseases and would also appear
to be a promising strategy in RCC patients. It is a non-
MHC-restricted approach and so has several advantages over
TCR, as previously mentioned. Furthermore, unlike MHC-
restricted immunotherapy, CAR-T cell therapy is susceptible
to the modulation of T-cell function to improve efficacy
and reduce toxicity. This last aspect is both an advantage
(the ability to self-modulate antitumor activity is certainly an

improvement compared to the past) and a disadvantage because,
as previously mentioned, this type of treatment can cause
particularly severe toxicities that were not induced by previous
therapeutic approaches. In particular, the risk of renal toxicity,
such as AKI, must be accurately evaluated in RCC patients who
frequently undergo nephrectomy. We must also not forget the
high cost of the drug, as well as the time required (a few weeks)
for its preparation. It may not always be possible to wait so long
before starting a treatment. In addition, CART-T cell therapy
requires apheresis and adequate lymphocyte count and function,
which may exclude some patients.

For these reasons, if an efficacy of CAR-T cell therapy similar
to that observed in hematological malignancies is proven in RCC,
the pros and cons of its use will need to be carefully evaluated in
each individual patient.

CAR-T and Radiotherapy in RCC Patients
The association of immunotherapy with radiation therapy
has been under investigation for some time, some studies
hypothesizing its potential usefulness for the treatment of
different cancers, including RCC (71–74).

The recent development of CAR-T cell therapy in solid
tumors has led to the hypothesis of its combination with
radiation therapy. In fact, the latter would appear to play
a role in stimulating cancer antigenicity, promoting CAR-
T cell chemotaxis and making the tumor microenvironment
more sensitive to immune activation (75).In particular, it has
been shown that γ-irradiation can enhance CAR-T efficacy by
increasing tumor antigen expression on cancer cell surface and
by stimulating IFN-γ secretion. Secreted by cancer cells, IFN-
γ is known to promote immune infiltration into the tumor
microenvironment, and radiation therapy influences tumor
vasculature, facilitating the diffusion of lymphocytes within
the tumor (75). However, there are still very few data on
the combination of radiotherapy and CAR-T cell therapy in
RCC. Given the solid rationale for this combination, further
research is warranted.

CAR-T Cell Therapy: Ongoing Trials in
RCC
In recent years, several articles have been published on the role of
CAR-T cell therapy in solid tumors. Some studies are ongoing in
the area of RCC (Table 1): a dose escalation and dose expansion
trial is being carried out to assess the efficacy of autologous
CAR-T cells CCT 301-38 or CCT 301-59 in recurrent/refractory
stage IV RCC. The authors are simultaneously evaluating
the effectiveness of two CARs directed against two different
molecular targets. CCT301-59 is a CAR-targeting tyrosine kinase-
like orphan receptor 2 (ROR2), an atypical receptor of the
tyrosine kinase family involved in several human diseases. In
RCC patients, ROR2 expression is correlated with other genes
associated with mytosis and migration, including PCNA, CDK1,
TWIST, and MMP-2 (76). CCT301-38 is another CAR directed
against AXL, a cell surface tyrosine kinase receptor, which is
part of the TAM kinase family. AXL, the high-affinity ligand
growth arrest-specific protein 6 (GAS6), is involved in multiple
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TABLE 1 | Clinical trials of chimeric antigen receptor (CAR)-T cell therapy in renal
cell carcinoma (RCC).

ClinicalTrials.gov
Identifier

Study Title Locations

NCT03393936 Safety and Efficacy of
CCT301 CAR-T in Adult
Subjects With Recurrent or
Refractory Stage IV Renal
Cell Carcinoma

Shanghai Public Health
Clinical Center, Shanghai,
China

NCT01218867 CAR T Cell Receptor
Immunotherapy Targeting
VEGFR2 for Patients With
Metastatic Cancer

National Institutes of Health
Clinical Center, Bethesda,
MD, United States

NCT02830724 Administering Peripheral
Blood Lymphocytes
Transduced With a
CD70-Binding Chimeric
Antigen Receptor to People
With CD70 Expressing
Cancers

National Institutes of Health
Clinical Center Bethesda,
MD, United States

NCT03638206 Autologous CAR-T/TCR-T
Cell Immunotherapy for
Malignancies

The First Affiliated Hospital
of Zhengzhou University,
Zhengzhou, Henan, China

NCT04438083 Phase 1 study evaluating the
safety and efficacy of CTX130
in subjects with relapsed or
refractory renal cell
carcinoma.

CRISPR Therapeutics AG,
Melbourne, VIC, Australia

tumor processes, including proliferation, angiogenesis, invasion,
metastatization, immune regulation, stem cell maintenance,
EMT, and drug resistance. Aberrant Gas6/AXL expression has
been described in several tumor types, including RCC (77).

In the ongoing trial, patients with a ROR2-positive biopsy
will receive CCT301-59, while those with an AXL tyrosine
kinase receptor-positive but ROR2-negative biopsy will receive
CCT301-38. A blood sample will be taken from patients to isolate
peripheral blood mononuclear cells (PBMCs) for the production
of CCT301-48 or CCT301-59. During the procedure, patients
will undergo a cyclophosphamide plus fludarabine conditioning
regimen to deplete lymphocytes, after which one intravenous
cycle of CCT301-48 or CCT301-59 will be administered. A 3 + 3
dose escalation model will investigate the safety and efficacy of
these molecules. Three different CAR T dosages will be evaluated:
1 × 105/kg, 1 × 106/kg, and 1 × 107/kg CAR+ T cells. This
study is currently active but not recruiting patients. The primary
completion date of the study is scheduled for the first months of
2021 (NCT03393936).

Another study is evaluating the safety and effectiveness of
the anti-VEGFR2 gene-modified CD8 cells in mRCC patients
(NCT01218867). Patients undergo lymphocyte-depleting
chemotherapy (cyclophosphamide and fludarabine) followed
by CAR gene-transduced CD8+ PBMC in combination with
aldesleukin. Participants are divided into two cohorts according
to histology: cohort 1 includes metastatic melanoma and RCC
patients and cohort 2, patients with other metastatic tumor types.
Preliminary results have failed to show any objective responses.

The same lymphodepleting preparative regimen is also being
used in another study currently ongoing to test peripheral blood

lymphocytes transduced with anti-hCD70 CAR in combination
with aldesleukin. CD70, normally expressed in B, T, and NK
cells, is a transmembrane receptor with a costimulatory role in
immune cell activation. CD70 is upregulated in several tumors
where it stimulates immune escape by promoting cytotoxic effects
on B and T lymphocytes. It is highly expressed in different RCC
histologies (clear cell, sarcomatoid, and some papillary tumors),
and this condition is correlated with decreased survival, thus
representing a potential target for therapies against RCC.

Two separate cohorts will be included, one with patients with
CD70-expressing RCC and another with patients with CD70-
expressing non-RCC solid tumors (NCT02830724).

More recently, a phase I study has begun enrollment of
patients with advanced, relapsed, or refractory clear-cell RCC
to test a new allogeneic therapy (CTX130). CTX130 consists
of an allogeneic CRISPR/Cas9 gene-edited CAR-T cell therapy
targeting CD70, which is currently under development for the
treatment of both solid tumors and hematologic malignancies.
The theoretical advantages of this type of CAR (allogeneic)
are: (1) immediate availability; (2) increased potency (because
it is derived from healthy donors); (3) greater consistency
(many doses from healthy donors); (4) no need for patient
apheresis; and (5) flexibility to titrate dose or re-dose. The final
data on the primary outcome measure is expected in February
2027 (NCT04438083).

Overall, despite the interesting ongoing research, conclusive
results have yet to be obtained.

CONCLUSION

Unlike other genitourinary tumor histotypes, RCC is a neoplasm
for which numerous drugs have been approved. After decades in
which no effective therapies were available because of its known
chemoresistance, the advent of biological therapies and then
immunotherapy a little over a decade ago has brought about a
marked improvement in terms of survival. In the wake of these
data, the unexpectedly promising results obtained from CAR-T
therapy in hematological tumors has prompted research into the
possibility of also using this treatment for RCC.

To date, however, there are still few results from few studies.
Furthermore, the peculiarities of solid tumors pose different
challenges with respect to hematological malignancies. The
presence of stroma and various inhibitory factors within the
tissue, the problems related to T-cell trafficking, and the non-
high antigenic selectivity represent just a few of the obstacles to
the successful outcome of the treatment. In addition, the risk of
side effects, including the aforementioned “on-target/off-tumor”
toxicity justifies the delay in the use of CAR-T cell therapy in
solid tumors, including RCC. Further research is thus needed
to resolve these problems before being able to claim an efficacy
comparable to that achieved in hematological tumors.
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