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Abstract 
 
Background 

Targeted deep sequencing is a highly effective technology to identify known and novel single 

nucleotide variants (SNVs) with many applications in translational medicine, disease 

monitoring and cancer profiling. However, identification of SNVs using deep sequencing data 

is a challenging computational problem as different sequencing artifacts limit the analytical 

sensitivity of SNV detection, especially at low variant allele frequencies (VAFs).  

Methods 

To address the problem of relatively high noise levels in amplicon-based deep sequencing 

data (e.g. with the Ion AmpliSeq technology) in the context of SNV calling, we have 

developed a new bioinformatics tool called AmpliSolve. AmpliSolve uses a set of normal 

samples to model position-specific, strand-specific and nucleotide-specific background 

artifacts (noise), and deploys a Poisson model-based statistical framework for SNV detection.  

Results 

Our tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off 

between precision and sensitivity, even at VAF below 5% and as low as 1%. We further 

validate AmpliSolve by applying it to the detection of SNVs in 96 circulating tumor DNA 

samples at three clinically relevant genomic positions and compare the results to digital 

droplet PCR experiments.  

Conclusions 
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AmpliSolve is a new tool for in-silico estimation of background noise and for detection of 

low frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been 

specifically designed for and tested on amplicon-based libraries sequenced with the Ion 

Torrent platform it can, in principle, be applied to other sequencing platforms as well. 

AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve.   
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Background 
 

Targeted next-generation sequencing (NGS) is a powerful technology to identify known and 

novel variants in selected genomic regions of interest [1]. It allows achieving high coverage 

levels (i.e., higher than 1000x) and, in principle, to confidently identify variants even when 

they occur at low allele frequencies. This is particularly important in cancer research and has 

many clinical applications, e.g. in relation to disease management. Typically, tumors are 

heterogeneous consisting of multiple clones and sub-clones the relative abundance of which 

can change over time depending on several factors, including treatment [2]. Identification of 

low frequency mutations is clinically relevant, among other reasons, for early diagnosis, 

disease monitoring and timely detection of the emergence of resistance clones under 

treatment [3]. 

 

Over the past years, it has been established that cancer patients’ circulating free DNA 

(cfDNA) contains tumor-derived DNA fragments (ctDNA) that can be used as an alternative 

to solid biopsies in clinical settings [4]. However, identifying cancer-specific mutations in 

liquid biopsy samples is challenging, as the relative proportion of ctDNA in cfDNA can be 

low, especially at cancer’s early stages. There are also several sources of sequencing errors 

including PCR artifacts, often reaching up to 1% Variant Allele Frequency (VAF), that 

reduce further the analytical sensitivity for detecting cancer-associated mutations [4]. Error 

correction techniques can be incorporated into NGS assays enabling ultra-sensitive single 

nucleotide variant (SNV) detection (VAF ~ 0.1%) but at a significant extra cost [5,6]. Thus, 

there is a need to reliably detect SNVs in more conventional deep sequencing data.  

 

In-silico identification of SNVs from NGS data is a well-studied problem [7,8]. However, the 

majority of existing variant calling programs have been designed for whole-exome and 
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whole-genome experiments sequenced at coverage of approximately 30x to 100x. At the 

same time, available variant calling software for targeted deep sequencing experiments have 

been typically developed for and tested on Illumina data [9].  

 

Compared to Illumina, Ion Torrent sequencing has a higher per base error rate and an 

associated lower accuracy in identifying mutations [10, 11]. However, it has the advantage of 

requiring lower amounts of input DNA and it offers both reduced cost and turnaround time. 

Thus, it is a cost-effective strategy for screening large cohorts of patients and it is particularly 

suited for point-of-care clinical applications [1], for example in conjunction with the Ion 

AmpliSeq Cancer Hotspot Panel. Given its translational potential, there is a real need to 

improve the variant calling workflow and recently a number of methods have been developed 

to deal specifically with Ion Torrent data [12, 13, 14].  

 

Here we introduce AmpliSolve, a new bioinformatics method to detect SNVs in targeted deep 

sequencing data. It combines in-silico background error estimation with statistical modeling 

and it is particularly suited to deal with data of comparatively high noise levels, similar to the 

ones produced by the Ion AmpliSeq library preparation. In order to estimate background 

noise levels per position, strand and nucleotide substitution, AmpliSolve takes as input deep-

sequencing data from a set of normal samples. This information is then fed to a Poisson 

model for the identification of SNVs. Experimental results using normal samples (self-

consistency test), synthetic variants and clinical data sequenced with a custom Ion AmpliSeq 

gene panel, demonstrate that AmpliSolve achieves a good trade-off between precision and 

sensitivity, even for VAF values below 5% and as low as 1%.  

Methods 
 

Method overview 
 
AmpliSolve consists of two main programs written in C++: AmpliSolveErrorEstimation and 

AmpliSolveVariantCalling. AmpliSolveErrorEstimation requires the availability of a set of 

normal samples processed with the deep sequencing platform and panel of choice. Here, we 

focus on the Ion Torrent Personal Genome Machine (PGM) and a custom AmpliSeq panel, a 

technology known to have relatively high rates of sequencing error compared to others. The 

program uses the normal samples to infer position-specific, nucleotide specific and strand-

specific background sequencing error levels (noise) across the targeted regions. Execution of 

AmpliSolveErrorEstimation is performed only once per panel design. Error estimates are then 

used as input to the AmpliSolveVariantCalling program for SNVs’ detection. The procedures 
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for in-silico noise estimation and SNV identification are described below. In Figure 1 we 

present a graphical overview of the AmpliSolve computational workflow.  

 

In-silico identification of the background sequencing error  
 

Our strategy for estimating background error levels, implemented in the 

AmpliSolveErrorEstimation program, is based on the assumption that alternative alleles 

observed at VAF<5% in normal samples are, in the majority of cases, the result of sequencing 

errors (see Figure S1 for the distribution of non-reference allele frequencies in normal 

samples showing the separation between heterozygous germline variants and lower frequency 

‘noise’ variants). Accordingly, we utilize a set of normal samples to estimate background 

noise in our custom panel. Notably, we estimate error levels separately for each genomic 

position, each nucleotide (alternative allele) and each of the two (forward and reverse) 

strands. In particular, for each genomic position we generate six error estimates (i.e. two each 

for the three alternative alleles). Error estimates are fed to a Poisson model, which is then 

used to calculate the p-value of the observed substitutions representing true variants versus 

them being noise. The detailed implementation is as follows. We first extract “raw” counts for 

each position, alternative allele and strand from the BAM files [15] of a set of N normal 

samples using the ASEQ software [16]. We run ASEQ with the quality parameters suggested 

by the authors of a previous study based on Ion AmpliSeq data [17], namely: minimum base 

quality  = 20, minimum read quality = 20 and minimum read coverage = 20. At every 

genomic position, we estimate the background error s separately for each alternative allele α 

and strand (+ or -) by calculating the fraction of reads carrying the alternative allele on a 

given strand across all normal samples. More specifically we use the following formula:  

 

𝑠!,!/! = !"!,!/!

!"#!/!
+ 𝐶                               (1) 

with  

 

𝐸𝑟!,!/! = 𝑅!
!,!/!!

!!!    (1a) 
    

and  

 

𝐸𝑟𝑑!/! = 𝑅𝐷!
!/!!

!!!              (1b) 
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We denote with Ri
α,+ and Ri

α,- the number of reads supporting the alternative allele α on the 

forward and reverse strand, respectively, in normal sample i. We denote with RDi
+ and RDi

- 

the total number of reads (read depth) at the genomic position of interest on the forward and 

reverse strand, respectively, in normal sample i. Summations are taken over all normal 

samples utilized for the error estimation. C in equation (1) is a constant pseudo-count 

parameter that is introduced to mitigate the problem of positions in which the alternative 

allele read count might be underestimated (e.g. due to a relatively low read depth at a given 

position in the normal samples). In the Results section we test values of C in the range from 

10-5 to 2!10-2.  

 

When calculating the summations in (1a) and (1b), we apply two filters that aim to increase 

the quality of the error estimation at specific positions and for specific alternative alleles α at 

that position. First, at a given position, samples for which an alternative allele α has VAF > 

5% are not considered at that position for that particular allele. This is because a frequency 

greater than 5% is likely to indicate, in that sample, either the presence of a real variant (i.e. a 

single nucleotide polymorphism) or a particularly noisy ‘read-out’. Second, samples that at a 

given position have coverage lower than a predefined threshold either on the forward or on 

the reverse strand are not considered for computing 𝐸𝑟!,!/!  (1a) and 𝐸𝑟𝑑!/! (1b) for any 

allele α at that position. In the following we use a threshold of 100 reads which, in our case, 

typically excludes 5% of sites per sample (see Figure S2); however, this parameter can be 

adjusted depending on the study design. After applying these filters, positions and alternative 

alleles for which 2/3 or more of the normal samples cannot be used for calculating the 

summations in (1a) and (1b) are considered non-callable. We note that among non-callable 

cases there may be positions with alleles that are either frequent in the population or simply 

over-represented in the specific set of normal samples used for the error estimation. However, 

given that AmpliSolve main goal is the identification of somatic mutations this does not 

constitute a major limitation. 

 

SNV detection using a cumulative Poisson distribution 
 
Given a sample of interest, for every alternative allele α featuring a non-zero strand-specific 

(+ or –) variant read count 𝑘!,!/!, the	 AmpliSolveVariantCalling program uses a Poisson 

model to calculate the probability that 𝑘!,!/!  or more variant reads are produced by 

sequencing errors, i.e. the p-value. Only positions that, in the sample of interest, have read 

depth on each strand higher than a pre-assigned threshold RDmin are considered (in the 

following, we set RDmin = 100 unless otherwise specified). At these positions, the calculated 

p-value is a function of the normal sample-based sequencing error 𝑠!,!/! from the previous 
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section and of both the number of variant reads 𝑘!,!/! and the strand-specific read depth K+/- 

in the sample of interest (K+/- >RDmin
 ). In particular: 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑡  𝑘!,!/!,𝐾!/!, 𝑠!,!/!) = 1 −  𝑒!!∗! (!∗!)!

!!
!!!
!!!      (2) 

 

   

Where, for better readability, on the right side of the equation we have omitted all α symbols 

for k and s, as well as, +/- symbols for k, K and s. We observe that K*s is the expected 

number of random substitutions for a depth of coverage K or the mean of the Poisson 

distribution. Note that p-values are not corrected for multiple testing. The strand-specific p-

values are finally converted to quality scores using the formula Q=-10*log10(p-value). In its 

output, for all positions in the panel carrying substitutions with Q score equal to or greater 

than 5 on both strands, AmpliSolve reports the average Q score between the two strands. Vice 

versa, positions with no substitutions or with substitutions with associated Q score lower than 

5 on one or both strands are not reported in AmpliSolve’s output. All reported SNVs are 

further tested for and potentially assigned one or more of the following warning flags:  

a) ‘LowQ’ if the Q score is lower than 20 in at least one of the two strands.  

b) ‘LowSupportingReads’ if the SNV is supported by less than 5 reads per strand in the 

tumor samples being analysed.  

c) ‘AmpliconEdge’ if the SNV is located within overlapping amplicon edge regions, 

which may result in sequencing artifacts.  

d) ‘StrandBias’ if the SNV is associated to a strand-bias. We apply Fisher’s exact test to 

each SNV under the null hypothesis that the number of forward and reverse reads 

supporting the variant should be proportional to the total number of reads sequenced 

in the forward and reverse strands, respectively. The flag is assigned to substitutions 

for which the p-value of the Fisher’s exact test is lower than a pre-defined value SBth. 

In the following we set SBth = 0.05 (unless otherwise specified).   

e) ‘HomoPolymerRegion’ if the SNV is located within a homopolymer region using the 

same criteria as in [18]. 

f) ‘PositionWithHighNoise’ if the SNV is supported by more than 5 reads per strand but 

the associated VAF is lower than the maximum VAF at this position across all 

normal samples in the training set. 

 

If no warning is issued, AmpliSolve assigns a ‘PASS’ flag to the SNV.   

 

Performance measures 



	 7	

 
To assess AmpliSolve’s success in detecting SNVs, we use a number of performance metrics: 

1. Sensitivity or True Positive Rate (TPR) = TP / (TP+FN) 

2. Precision or Positive Predictive Value (PPV)= TP/(TP+FP) 

3. False Discovery Rate (FDR) = 1-PPV=FP / (FP+TP) 

4. Harmonic mean of Precision and Sensitivity (F1) = 2*TP / (2*TP +FP + FN) 

Where, TP is the number of True Positive predictions, FN is the number of False Negative 

predictions and FP is the number of False Positive predictions.  

 

Clinical data used in this study 
 

For the development and evaluation of AmpliSolve, we have access to an extensive collection 

of clinical samples from castration-resistant prostate cancer (CRPC) patients, part of which 

had been already presented in previous publications [17,19,20,21]. The collection comprises 

184 germline samples (white blood cells, buccal swabs or saliva) and more than 450 liquid 

biopsy plasma samples (note that for some patients there are multiple liquid biopsies and a 

small minority of liquid biopsy samples has no matched normal). In practice for this study, 

we rely on all 184 normal samples but only use 96 liquid biopsy samples for which results 

from digital droplet PCR (ddPCR) assays are available (see below). For 5 additional patients 

we have access to 10 solid tumor samples from metastatic sites (1, 2 and 3 samples from 

respectively 1, 3 and 1 patients) and their associated 5 germline samples. For the available 

samples, we have the following data: 

a) For all samples (germlines, liquid biopsies and solid tumors), we have Ion Torrent 

sequencing data obtained using a custom Ion AmpliSeq panel of 367 amplicons spanning 

40,814 genomic positions at around 1000-1500x coverage. The panel targets both intronic and 

exonic regions in chromosomes 8, 10, 14, 17, 21 and X including commonly aberrated genes 

such as PTEN, CYP17A1, FOXA1, TP53, SPOP as well as the androgen receptor (AR) gene, 

which is one of the main drivers of CRPC, and the drug target CYP17A1. More details about 

the sequencing protocol, data processing and additional information about the application of 

our custom Ion AmpliSeq panel in CRPC diagnostic studies can be found in [17] and [19]. 

These papers also include a description of a variant caller that we used as starting point for 

developing AmpliSolve.  We call variants in these Ion AmpliSeq data with our program 

AmpliSolve.  

 

b) For the 10 solid tumor samples and 5 matched germline samples, in addition to Ion Torrent 

data, we have Illumina Whole Genome Sequencing (WGS) data at around 80-100x (tumor) 



	 8	

and 30x (germline) coverage.  We call variants in WGS data according to a previously 

established pipeline [22], which we describe in the next section.  

 

c) For 96 liquid biopsy samples, we have results from ddPCR assays to screen 3 clinically 

relevant SNVs in the AR gene. These SNVs have been linked to resistance to targeted therapy 

in CRPC patients, namely: 2105T>A (p.L702H), 2226G->T (p.W742C) and 2632A>G 

(p.T878A). ddPCR in the plasma samples was performed using 2-4 ng of DNA, using Life 

Technologies Custom Taqman snp genotyping assay (product codes AH0JFRC, 

C_175239649_10 and C_175239651_10, respectively). Following droplet generation 

(AutoDg, Bio-Rad) and PCR, samples were run on the Bio-Rad QX200 droplet reader and 

analyzed using the QuantaSoft software. 

 

WGS variant calling pipeline 
 

We used Illumina WGS data to generate a benchmark set of calls (“ground-truth”) against 

which AmpliSolve performance is evaluated. WGS data have been processed using standard 

tools, such as Skewer [23] for adapter trimming, BWA-MEM [24] for mapping and Picard 

[25] for duplicate removal. In order to call SNVs we run a previously developed pipeline [22] 

that utilizes jointly Mutect [26] and Platypus [18] (throughout the manuscript this pipeline is 

denoted as MutPlat). Briefly, we first run Mutect (default parameters) on each paired tumor-

normal samples. Then, we use Mutect’s calls as priors for Platypus and jointly call variants on 

all tumors and matched normal samples of a patient (further details are provided in Additional 

file 1: Supplementary Methods). Our ground-truth set of calls consists of both germline and 

somatic mutations extracted as explained below.  

 

Germline variants are identified as those variants called in the normal (GT=0/1 or 1/1) and 

that, additionally, have either a PASS filter flag or don’t have a PASS filter flag (could have 

e.g. ‘badReads’) but are present in 1000 genomes (phase 3 release) [27]. For AmpliSolve 

validation purposes we consider only tumor samples but include both germline and somatic 

SNVs. By including germline SNVs, in particular, we are able to test a higher number of low 

VAF mutations than would be possible when considering only somatic mutations. This is due 

to a combination of somatic deletions and germline DNA contamination in the tumor 

samples. Indeed, while somatic deletions cause loss of some germline SNPs in tumor DNA, 

germline DNA contamination (i.e. <100% tumor purity) means that these mutations may still 

be present in the tumor samples, albeit with a lower VAF. Note that if somatic deletions occur 

in high tumor purity samples and/or the sequencing coverage is not deep enough, germline 

variants may have no supporting read at all in the WGS tumor data. We keep also these 
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limiting cases as part of our ground-truth set of variants as they might be (and sometimes are) 

detectable in the targeted Ion AmpliSeq data. 

 

To call a somatic SNV we require all of the following criteria to be met: i) Platypus filter: 

PASS, alleleBias, Q20, QD, SC or HapScore, ii) at least 3 reads supporting the variant in the 

tumor, iii) at least 10 reads covering the position in the germline and no support for the 

variant in the germline (NV=0 and genotype GT= 0/0), iv) SNV not present in the 1000 

genomes database. 

 
SNV callers tested for comparison 
 
On WGS and ctDNA samples, we compare AmpliSolve to SiNVICT [12], a tool that has 

been shown to be effective in detecting mutations at very low VAF in Ion Torrent data. We 

run SiNVICT (version 1.0) with default parameters and with no additional data pre-

processing steps. We split the tumor samples (10 metastatic solid tumors plus 96 ctDNA 

samples) into 3 batches of similar size and we run SiNVICT simultaneously on all samples 

from each batch.    SiNVICT applies a number of post-processing filters and calls variants at 

6 different confidence levels, with level 6 assigned to variants that pass all filters. On ctDNA 

samples, we additionally compare AmpliSolve to deepSNV [9], a state-of-the-art method for 

calling low allele frequency variants in deep sequencing data (although originally designed to 

detect sub-clonal mutations on Illumina rather than Ion AmpliSeq data). We run deepSNV 

(version 1.21.3) with default parameters following the available vignette in the R package. 

 
How to run AmpliSolve 
 

AmpliSolve two modules, AmpliSolveErrorEstimation	and	AmpliSolveVariantCalling, can 

be downloaded from github (https://github.com/dkleftogi/AmpliSolve). Additional 

requirements include running versions of the programs Samtools [15], ASEQ [16] and the 

Boost libraries for C++. Here we provide a brief description of how to run AmpliSolve, 

however, more detailed information and a number of examples are available on the github 

page.  

 

For a given amplicon panel, error estimation at each genomic position, for each alternative 

nucleotide and for each of the two strands requires availability of amplicon-based data from N 

normal sample files. Although we don’t enforce a minimum value for N, values below 10 are 

likely to give low-quality error estimations. In general, we suggest using as many normal 

samples as possible when training the error matrix for your panel. If normal samples are not 

available, AmpliSolveErrorEstimation assigns a constant error rate to all positions, 
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nucleotides and strands in the panel. The default constant error is 0.01 but the user can specify 

a different value if needed (e.g. for different sequencing platforms). Note that 

AmpliSolveErrorEstimation	 does	 not	 take	 bam	 files	 as	 input	 but	 rather	 bam-derived	

read	count files. Read count files can be obtained by running the program ASEQ [16].  Once 

the read count files have been produced, the user needs to set the value of the C pseudo-count 

parameter (equation (1)). The choice of C will depend on the trade-off between precision and 

sensitivity the user is interested in. Users can refer to the benchmarking experiments 

performed in this paper. In general, values of C between 0.001 and 0.01 should suit most 

applications.   

	

Once the error matrix has been calculated, it can be fed to the AmpliSolveVariantCalling 

program together with read count files for the tumor samples again to be produced by running 

ASEQ. Note that AmpliSolveVariantCalling does not require matched normal-tumor samples 

for calling SNVs. In fact, AmpliSolveVariantCalling calls all variants it can find in the tumor 

sample, including germline variants. To separate germline from somatic variants users will 

need to run AmpliSolveVariantCalling on a matched normal sample and take the difference 

between the two output files. Command-line syntax for running AmpliSolveErrorEstimation 

and AmpliSolveVariantCalling is provided on github.  

Results  

Sequencing error estimation, self-consistency test and AmpliSolve FDR  

AmpliSolve estimates the background sequencing noise by analyzing the distribution of 

alternative alleles in normal samples. As previously reported, PGM errors tend to be 

systematic [11]. For example, we observe that A>G (T>C) and, to a lesser extent, C>T (G>A) 

mutations tend to have a higher background error level (see Figure S3). For this reason, 

AmpliSolve assigns separate error levels to each genomic position, each alternative allele and 

each strand (see Figure S4). These are then utilized to build the Poisson models that are at the 

core of AmpliSolve SNV calling (Methods). In this section, we study AmpliSolve variant 

calling performance as a function of two parameters: the pseudo-count C (equation (1) in 

Methods) and the number of normal samples N that are used to calculate the error estimations. 

We perform a self-consistency test using sets of normal samples to train our models and 

other, non-overlapping sets of normal samples for testing them. Given a dataset of N=184 

normal samples (Methods), we proceed as follows: 1) we select a number M < N of samples 

at random and additionally a value c of the C parameter; 2) we use the M samples to train our 

Poisson-models with C=c; 3) we use the models obtained in 2) to predict SNVs in the 
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remaining N-M samples; 4) we calculate FDR and TPR by defining as negatives all 

alternative alleles that have VAF<20% and as positives those for which VAF≥20%. This 

threshold is chosen empirically based on the distributions of VAFs that we observe in the data 

(Figure S1); 5) we repeat steps 1) to 4) 50 times for each pair of (M,c) values, each time 

selecting a new set of M samples at random; 6) we calculate median FDR and TPR over the 

50 experiments. We perform steps 1) to 6) for all combinations of the following values of M 

(size of the training set) and c (parameter C): M=10, 20, 40, 80, 120 and c=10-5, 5*10-5, 10-4, 

5*10-4, 10-3, 2*10-3, 5*10-3, 10-2, 2*10-2. In Figure 2a and 2b, we plot the median FDR for 

each size of the training set (10-120) as a function of C; additionally, for comparison, we plot 

the median FDR of a method in which we skip the error estimation step and we set instead 

s=c for all positions, nucleotides and strands (‘baseline caller’) (see equation (1) in Methods 

for the definition of s). The FDR reported in Figure 2a is calculated by considering an SNV as 

called by AmpliSolve if and only if it has a Q score higher or equal 20 (i.e. p-value ≤ 0.01; 

this is equivalent to the SNV not having a LowQ flag, see Methods). The FDR reported in 

Figure 2b, instead, is calculated by considering an SNV as called by AmpliSolve if and only 

if the program assigns a ‘PASS’ flag to it, that is, if none of the warnings described in the 

Methods section applies. In Figure 2a we see that, for relatively small values of c, the training 

set size N affects the method performance, with more samples providing better error 

estimation and thus lower FDR. Also, our approach provides an approximately 2- to 4-fold 

FDR improvement over the baseline caller at all values of c≤0.01. For values of c>0.01, 

instead, differences with the baseline caller become negligible. Figure 2b shows that filtering 

AmpliSolve’s SNV calls using the warning flags that we define on top of LowQ (such as 

those related to low number of supporting reads, homopolymer regions, etc.) has the effect of 

further improving the FDR. Also, it reduces differences between FDRs obtained when using 

training sets of different size. All of the above findings suggest that estimating the 

background noise at each position, for each nucleotide and for each strand is important for 

reducing the number of FPs arising from noise in Ion AmpliSeq data. If we now consider the 

median values of the Sensitivity measure (or TPR), we discover that in all our experiments 

they are close to 1, irrespective of the value of M and c. This close to perfect Sensitivity is not 

surprising as our definition of positives (VAF≥20%) makes them relatively simple to 

discriminate from the background noise especially considering the fact that most of them 

have VAFs that are much higher than 20% (Figure S1). Thus, in order to truly test 

AmpliSolve Sensitivity, we have to perform a different kind of experiment, which we 

describe in the next section.  

Synthetic variants test for TPR estimation 
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In order to test the sensitivity of our method at low VAFs (0.5% to 4%), we design the 

following experiment. We first select two amplicons on the AR gene (1,017 genomic 

positions overall); the AR gene is chosen because clinically relevant but for this purpose other 

choices would be equally valid. Then, we use 120 normal samples randomly selected from the 

full set of 184 described in Methods to estimate the errors at each position in the two 

amplicons, for each nucleotide and each strand, according to formula (1). Next, we test the 

method’s sensitivity on synthetic variants. For each possible alternative allele at each of the 

1,017 amplicon positions, we set read depth to a fixed value COV and the number of reads 

supporting the allele to 2a (a supporting reads on the forward strand and a on the reverse 

strand). We use COV=800, 1600, 3200, 6400 (values in this range apply to more than 60% of 

full panel positions with coverage >200, see Figure S5) and for each value of COV we select 

a corresponding to VAFs of 0.5%, 1%, 1.25%, 2%, 3% and 4%. For example for COV=800 

we test a=2,4,5,8,12,16. We then apply the Poisson models previously trained on the 120 

normal samples to predict variants at each position and for each alternative allele and consider 

only AmpliSolve calls with a ‘PASS’ quality flag. We consider all synthetic variants to be 

positives (thus, no FDR can be calculated in this case) and ask how many of these can be 

detected by AmpliSolve. We stress that while in each experiment the VAF is by design the 

same at all positions and for each alternative allele and strand, following estimation from the 

normal samples the error estimate is position-, alternative allele- and strand-dependent. We 

calculate the TPR for all combinations of COV and VAF. We do this for several values of the 

pseudo-count parameter C in the range of low AmpliSolve FDR as calculated from the self-

consistency test in the previous section or the range of main interest for applications 

(C=0.001, 0.002, 0.005, 0.01, 0.02, see Figure 2b).  

Figures 3(a-e) highlight the role of the C parameter as an approximate lower bound for 

AmpliSolve sensitivity (see equation (1)). Typically, AmpliSolve identifies few or no variants 

at allele frequencies equal to or lower than C, in the range of tested coverage depth (see, in 

particular, Figures 3c-e). For example, for C=0.005 no calls are made at VAF=0.5% even at 

values of COV as high a 6,400. Along the same lines, for values of C equal 0.01 and 0.02, 

which correspond to FDRs below 1.6% and 0.6%, respectively (Figure 2b), the lowest VAFs 

that AmpliSolve can detect are above 1% and 2%, respectively. For VAF values above C, on 

the other hand, sensitivity grows quickly with increasing VAF. For example within the depth 

of coverage range that we have analyzed, when using C=0.01 and C=0.02 AmpliSolve 

successfully calls the vast majority of synthetic variants at VAF 2% and 3%, respectively. 

When we compare the Sensitivity histograms in Figures 3a-e to the FDR curves in Figure 2b, 

we see that AmpliSolve can reliably predict synthetic SNVs at VAFs as low as 1% while still 

in a regime of relatively low FDR. Indeed for C=0.002, at an estimated FDR of 6.8% (Figure 



	 13	

2b), AmpliSolve calls most SNVs with 1% allele frequency at depth of coverage >1,600 and 

most SNVs with allele frequency 0.5% at depth of coverage >3,200. While it will be up to the 

user to select the best trade-off between FDR and TPR for a specific experiment, it would 

appear that values of C between 0.001 and 0.01 would likely represent a reasonable 

compromise between these two performance measures in most applications.  

Benchmarking AmpliSolve perfomance using Illumina WGS data 

For 5 additional CRPC patients, we have access to 10 metastatic solid tumor (for some 

patients more than one metastasis) and associated normal samples. These were sequenced 

both with our custom Ion AmpliSeq panel and with the Illumina platform as WGS (the latter, 

with average coverage ~100X) (Methods). We use these 10 samples to provide a validation of 

AmpliSolve SNV calls in a more realistic set-up with respect to what shown in the previous 

two sections. For training our AmpliSolve Poisson models, we use the full set of 184 normal 

samples sequenced with the Ion AmpliSeq technology and we set C=0.002. 

In the solid tumor samples, when run on the Ion AmpliSeq data AmpliSolve identifies a total 

of 556 SNVs. For the same set of genomic positions processed by AmpliSolve, our WGS-

variant calling pipeline MutPlat (Methods) calls a total of 603 SNVs in the corresponding 

Illumina data. The list of positions processed by AmpliSolve includes all those covered by 

our amplicon panel minus the ones for which no background error estimate can be produced 

(Methods). Almost all SNVs identified in the WGS data are germline (592 out of 603) but 

some of them have low VAF in the tumor samples because of deletions and loss of 

heterozygosity (LOH) events in the tumor DNA combined with germline DNA 

contamination. It is therefore a very valuable test set that includes confidently identified 

variants at low VAF. 

The level of agreement between AmpliSolve and the ground-truth set of calls from MutPlat is 

summarized in Figure 4a and in Table 1. On this data, AmpliSolve achieves 87% TPR, 94% 

PPV and 90% F1. In particular, of the 556 SNVs called by AmpliSolve, 525 SNVs are also 

identified by MutPlat (TP). The remaining 31 are likely false positives (FP) although some of 

them might be real somatic variants with very low VAFs (and hence non detectable by a 

WGS done at 100x). The 78 SNVs additionally identified by MutPlat in the WGS data are 

likely AmpliSolve false negatives (FP). However, we note that 48 of them correspond to 

positions not called because the coverage in the tumor samples was below the threshold of 

100 reads per strand and 26 were filtered out because of the strandBias flag. By simply setting 

more lenient parameters RDmin=50 and SBth=0.01 we are able to drastically reduce the 
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number of missed calls without affecting AmpliSolve precision. With these settings we obtain 

571 TP, 34 FP and 32 FN, which translates into 95% TPR, 94% PPV and 94% F1.  

In Figure 4b and 4c we report a scatter plot of the VAFs in the WGS and AmpliSeq data with 

colors indicating common calls (purple), MutPlat-only calls (green) and AmpliSolve-only 

calls (blue), respectively. Overall there is a good concordance between AmpliSolve and 

MutPlat calls, even at low VAF (Figure 4c). In particular, AmpliSolve correctly identifies 18 

out of 21 SNVs with VAF < 5% in the WGS calls. AmpliSolve does call a number of likely 

false positives at low VAF, however we note that most of them occur at recurrent positions 

across patients and could therefore potentially be identified and discarded at a post variant 

calling analysis stage.  

In Table 1, we additionally compare AmpliSolve’s performance to the one of SiNVICT when 

run on the same 10 solid tumor samples.(MutPlat calls on the Illumina data are used as 

ground truth in both cases). SiNVICT assigns a confidence level (1 to 6) to its calls according 

to a series of hierarchical filters (each filter eliminates some calls from the previous level). On 

our dataset, SINVICT’s highest confidence level (level 6) although very precise appears to 

miss a substantial number of SNVs (i.e. it has low sensitivity), especially at low VAF. Better 

overall results are obtained at confidence levels 3 and 4, In this case, precision and sensitivity 

values are similar to the ones obtained by Amplisolve when using RDmin=50 and SBth=0.01. 

Interestingly, at low VAF AmpliSolve and SiNVICT seem to identify slightly different sets of 

SNVs, suggesting that it might be possible to improve SNV calling by appropriately 

combining them.   

Clinical application using ctDNA samples and ddPCR for validation 

One of the most promising clinical applications of ctDNA is profiling of specific mutations 

associated with tumor progression and resistance to cancer therapies. To evaluate 

AmpliSolve’s usefulness for this important task, we use results from a ddPCR screen on 96 

samples from our CRPC patients at three genomic positions within the AR gene, which are 

associated with resistance to targeted therapy (Methods). ddPCR detects 30 variants in total at 

these positions in a VAF range of 0.1 to 49% (note, however, that in some experiments only 

the presence or absence of the variant was recorded). Next, we compare AmpliSolve calls at 

the same positions in the AmpliSeq NGS data for the same samples (predictions made after 

training AmpliSolve with pseudo-count parameter C=0.002 on 184 normal samples). In 

Figure 5a we summarize the level of agreement between AmpliSolve and the ddPCR 

experiments. AmpliSolve correctly calls 19 out of 30 ddPCR variants and predicts variants at 

two additional positions. If we take the ddPCR experiments as our ground-truth, this 
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translates into 90% PPV 63% TPR and 74% F1 for AmpliSolve at these 3 clinically relevant 

genomic positions.  

As a comparison, we run the SiNVICT and deepSNV methods on the same Ion Torrent data 

and extract their SNV calls at these positions. The results are summarized in Table 2. Similar 

to what observed in the previous section, SiNVICT highest confidence levels (5 and 6) have 

low sensitivity (30% TPR). Better results are obtained at lower confidence level (1 to 4) 

whereby SiNVICT correctly identifies 17 out of 30 ddPCR variants without introducing any 

false positives. In total deepSNV calls 18 SNVs, 15 of which are correct.   

When looking at AmpliSolve predictions in more details (Figure 5b), we note that all ddPCR 

positives not called by our program (and additionally missed by both SiNVICT and 

deepSNV) have VAF<1% in the NGS data and that AmpliSolve succeeds in calling all 

ddPCR positives at higher NGS frequencies including several at VAFs between 1% and 5%. 

It is also important to note that AmpliSolve correctly predicts 256 out of 258 (99.2%) ddPCR 

negatives. While the results presented in this section refer to only three genomic positions, 

they are indicative of AmpliSolve’s potential value in a clinically relevant setting.  

	
Discussion 
 
In this study we present AmpliSolve, a new bioinformatics method that combines position-

specific, nucleotide-specific and strand-specific background error estimation with statistical 

modeling for SNV detection in amplicon-based deep sequencing data. AmpliSolve is 

originally designed for the Ion AmpliSeq platform that is affected by higher error levels 

compared to, for example, Illumina platforms. Our method is based on the estimation of noise 

levels from normal samples and uses a Poisson model to calculate the p-value of the detected 

variant. We assess AmpliSolve’s performance with experiments that use normal samples 

(self-consistency tests) and simulated data (synthetic variants) and, additionally, with tests 

that utilize real metastatic samples sequenced with both Ion Torrent and Illumina platforms. 

In these experiments, AmpliSolve achieves a good balance between precision and sensitivity, 

even at VAF < 5%. These experiments also suggest possible ways to further improve the 

method, such as adopting a better strand bias filter, reducing the minimum coverage 

requirement for calling a variant and introducing a ‘black list’ of positions characterized by an 

unusual noise distribution across samples (e.g. bimodal). Further, we test AmpliSolve in a 

clinically relevant setting by calling SNVs in 96 liquid biopsy samples at 3 positions that had 

been additionally screened by ddPCR assay. In this experiment AmpliSolve successfully 

identifies SNVs at VAF as low as 1% in the NGS data. This opens up interesting possibilities 
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for clinical applications using the Ion Torrent PGM such as, for example, tracking mutations 

in ctDNA to monitor treatment effectiveness and/or disease relapse.  

 

Conclusions 
AmpliSolve is a new computational tool for the detection of low frequency SNVs in targeted 

deep sequencing data. It uses a set of germline samples to build a sequencing error profile at 

each genomic position of interest. Based on these profiles AmpliSolve estimates the 

likelihood of a variant being real or just the result of sequencing artefacts. We test 

AmpliSolve on clinical cancer samples sequenced with a custom Ion AmpliSeq gene panel 

and show that AmpliSolve can correctly identify variants even at allele frequency below 5% 

and as low as 1%. This is significant because detecting variants with low allele frequency can 

be challenging using Ion Torrent sequencing. From a methodological point of view, we 

believe that the use of models with position-specific error estimates, as described here, could 

have a significant impact on variant detection for other sequencing platforms as well.   
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Additional file 1: Supplementary Methods. Details of the MutPlat pipeline. 

 

Additional file 2: Figure S1. Variant allele frequency (VAF) distributions for the A, T, C, G 

nucleotides as calculated from 30 randomly chosen normal samples across our custom 

AmpliSeq panel. Only VAFs < 60% are displayed. The red lines mark VAF = 20%. 

 

Additional file 3: Figure S2. Fraction of sites in a normal sample sequenced at a given 

coverage or more across our custom AmpliSeq panel.  The values are calculated over 30 

randomly selected samples.  

 

Additional file 4: Figure S3. Distributions of background error values by mutation type. 

Panels (a), (b), (c) and (d) refers to mutations from reference allele A, C, G and T 

respectively. Mutations are split by alternative allele and strand, (+) and (-). Note the higher 

error values for A>G (T>C) and C>T (G>A) mutations. Plots are bound to error values of 

0.005 on the y-axis for visual clarity.     

 

Additional file 5: Figure S4. Position-specific, allele-specific and strand-specific frequency of 

alternative alleles in 100 consecutive positions in the AR gene. 

 

Additional file 6: Figure S5. Fraction of sites in our custom AmpliSeq panel sequenced at a 

given coverage or more. The values are calculated over 30 randomly selected ctDNA 

samples. Note that positions with depth of coverage less than 200 are not considered for 

calculating the total number of positions.  The red lines represent the upper and lower bounds 

of coverage used in the synthetic variant test. 
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Figures 
 
Figure 1 
 

 
 
Graphical representation of AmpliSolve’s workflow for estimating the noise levels and detecting SNVs. The 
workflow comprises the following steps: a) Screening the available normal samples to identify reads supporting 
alleles other than the reference. b) Error estimation per position, per nucleotide and per strand for all positions in 
the gene panel based on the distribution of alternative allele counts in (a); only alternative counts corresponding to 
VAF<5% are taken into consideration; c) For each genomic position in a tumor sample, the method identifies the 
total coverage of the position and the number of reads supporting the alternative alleles, if any. d) Given the 
information from steps b) and c) the method applies a Poisson distribution-based model to compute the p-value 
that the variant (red line) is real. This p-value is then transformed to a quality score that is used by AmpliSolve 
together with additional quality criteria to identify SNVs.    
 
Figure 2 
 

 
 
Assessing AmpliSolve’s performance using normal samples. a) Median AmpliSolve FDR (%) as a function of 
the model pseudo-count parameter, when using different numbers M of normal samples as training set and testing 
on the remaining normal samples. We consider as TP all normal variants with VAF≥20% and as FP all normal 
variants with VAF<20% (see Text). We consider all AmpliSolve calls that have Q-score≥20. b) Same as (a) when 
considering only AmpliSolve calls with a ‘PASS’ quality flag (see Text). 
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Figure 3 

 
 
Assessing AmpliSolve’s sensitivity using synthetic data. (a-e) AmpliSolve TPR (Sensitivity) values in in-silico 
synthetic variant experiments. We test different combinations of VAF, depth of coverage and C parameter values 
(see Text).  
 
Figure 4 

 
 
Benchmarking AmpliSolve calls with Illumina WGS calls a) Venn diagram of mutations on 10 samples 
sequenced with both Ion Torrent and Illumina platforms and called respectively by AmpliSolve and by MutPlat. 
Low coverage positions denote mutations excluded by AmpliSolve because poorly covered (<100 reads on at least 
one strand, ‘uncallable’ by AmpliSolve). (b) Scatter plot of VAFs in WGS and AmpliSeq data. Note that all the 
SNVs not called by AmpliSolve (green point) have some support in the data and are reported in its output (hence 
they have AF > 0) but are filtered out, mostly because of strand bias. (c) Same as (b) but for VAFs<20%. Note that 
some concordant calls (purple points) have WGS AF=0; these are real germline variants with no support in the 
tumor (Methods). For the sake of this comparison, both in (b) and in (c) we don’t consider the 49 mutations at 
positions of low coverage in Ion Ampliseq data  (see (a)) (‘uncallable’ for AmpliSolve).  
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Figure 5 
 

 
 
Validating AmpliSolve performance with ddPCR experiments. a) Venn diagram of mutations in 96 samples at 
3 positions as determined by AmpliSolve and ddPCR experiments. False positives refer to variants called by 
AmpliSolve and not detected by ddPCR, false negatives the opposite. In 256 out of 288 cases neither AmpliSolve 
nor ddPCR detect a mutation. (b) Scatter plot of the VAFs in the ddPCR and Ion Torrent data. Most of the SNVs 
missed by AmpliSolve (green points) have some support in the NGS data but they cannot be distinguished from 
noise. Because of the log scale, we arbitrarily set AF=10-4 for negative calls with AF=0. Similarly, we set AF=1 for 
ddPCR calls for which no allele frequency information is available.  
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Table 1.  
 
Comparison between AmpliSolve and SiNVICT calls across the targeted panel. MutPlat 
calls on Illumina WGS data have been used as ground-truth. SiNVICT levels correspond to 
confidence levels in the calls (6 being the highest). TP=True Positives, FP=False Positives, 
FN= False Negatives, TPR=True Positives Rate (Sensitivity), PPV=Positive Predictive Value 
(Precision), F1=Harmonic mean of Precision and Sensitivity.     
 
 
  TP FP FN TPR PPV F1 

AmpliSolve  525 31 78 87% 94% 90% 

 
 
 
SiNVICT 

Level 1 591 156 12 98% 79% 88% 

Level 2 587 154 16 97% 79% 87% 

Level 3 575 34 28 95% 94% 95% 

Level 4 575 34 28 95% 94% 95% 

Level 5 141 12 457 24% 92% 38% 

Level 6 104 3 494 17% 97% 29% 

	
	
	
	
	
	
	
Table 2 
 
Comparison of SNV calling on 96 samples at 3 genomics positions.  The 3 positions on the 
AR gene were screened by ddPCR used here as ground-truth. SINVICT Levels 5 and 6 and 
Levels 1, 2, 3 and 4 have been grouped as they give the same results. TP=True Positives, 
FP=False Positives, FN= False Negatives, TPR=True Positives Rate (Sensitivity), 
PPV=Positive Predictive Value (Precision), F1=Harmonic mean of Precision and Sensitivity.        
	
  TP FP FN TPR PPV F1 

AmpliSolve  19 2 11 63% 90% 74% 

SiNVICT 
Levels 1,2,3,4 17 0 13 57% 100% 73% 

Levels 5,6 9 0 21 30% 100% 46% 

deepSNV  15 3 15 50% 83% 62% 

	


