90 research outputs found

    Polymer Nanocomposites Containing Anisotropic Metal Nanostructures as Internal Strain Indicators

    Get PDF
    Polymer/metal nanocomposite containing intrinsically anisotropic metal nanostructures such as metal nanorods and nanowires appeared extremely more sensitive and responsive to mechanical stimuli than nanocomposites containing spherical nanoparticles. After uniaxial stretching of the supporting polymer matrix (poly(vinyl alcohol)), the elongated silver nanostructures embedded at low concentration into the polymer matrix (<1 wt % of Ag) assume the direction of the drawing, yielding materials with a strong dichroic response of the absorption behavior. Accordingly, the film changed its color when observed under linearly polarized light already at moderate drawings. The results obtained suggest that nanocomposite films have potential in applications such as color polarizing filters, radiation responsive polymeric objects and smart flexible films in packaging applications

    P-440 Impact of electrospun scaffold topology on the performance of in-vitro Folliculogenesis applied to preantral ovine follicles

    Get PDF
    Study question How to improve in-vitro Folliculogenesis (ivF) protocols to address the enlarged demand of fertility preservation? Summary answer Tissue engineering-based approach opens new frontiers for ivF improving 3D-technologies addressed to support immature-ovarian-follicle-growth to obtain an increased number of competent oocytes enrolled in Assisted-Reproductive-Technology. What is known already ivF is a promising Assisted-Reproductive-Technology (ART) for preserving and restoring fertility. This technology potentially reproduces the early stages of folliculogenesis and oogenesis in-vitro allowing to move a large amount of oocyte on individual basis towards the validated protocol of in-vitro maturation/in-vitro fertilization (IVM/IVF). The current availability of biocompatible-supporting materials offers the challenging opportunity to mimic the native organ stroma in order to better reproduce the 3D environmental conditions leading to synergic follicles-oocyte development in-vitro with the aim to improve the performance of ivF in translational large sized mammal models. Study design, size, duration The present research aimed to compare preantral (PA) follicles culture on two different typologies of scaffolds fabricated using PCL(poly(epsilon caprolactone)), respectively made with patterned and randomly aligned fibers (PCL-Patterned/PCL-Randomic) with a standardized-single-follicle scaffold-free-method (3D-oil), widely validated on ovine model (Cecconi et al., 2004). The culture outcomes are compared analyzing follicle/oocyte growth, percentage of antrum differentiation and the incidence of meiotic competence, by exposing ivF growing oocytes to IVM protocol. Participants/materials, setting, methods PA follicles (mean size diameter: 250±4μm), mechanically isolated from slaughterhoused lamb ovaries, were individually cultured on electrospun PCL scaffolds (patterned vs randomic) or using the 3D-oil method. ivF were cultured alphaMEM-Fetal Bovine Serum free medium (5% Knockout Serum Replacement) supplemented with 4 IU/mL of equine Chorionic Gonadotropin (Di Berardino et al., 2021). At the end of ivF (14-days) the fully-grown oocytes isolated from early-antral follicles were tested on IVM. Main results and the role of chance PCL-Patterned electrospun scaffolds were able to strongly support a synergic oocyte and follicular growth. The 3D culture on Patterned electrospun scaffold supported the highest viability of follicles (87.5% vs 63% under 3D-oil conditions). On the contrary, the highest incidence of degenerated follicles was observed in cultures performed using PCL-Randomic materials (55 vs 37% vs 12.5% for PCL-Randomic vs 3D-oil vs PCL-Patterned, respectively; p &lt;0.0004). The greatest follicle diameter increment (74.7±1 vs 70±0.4 vs 60.9±2%, for PCL-Patterned vs 3D-oil vs PCL-Randomic, respectively p &lt;0.0007) and rate of antrum differentiation (87.5% vs 45% and vs 63%, for PCL-Patterned vs 3D-oil vs PCL-Randomic, for both p &lt;0.0001) were observed in PA ovine follicles cultured on PCL-Patterned scaffolds. Furthermore, PCL-Patterned electrospun scaffolds supported a complete functional development of the oocyte compartment. More in detail, the majority of fully grown oocytes isolated from early- antral follicles grown on PCL-Patterned materials reached the metaphase-II stage (MII 80%) at the end of IVM in comparison to the significant lower percentage in 3D-oil (MII 68%, p =0.04) and PCL-Randomic (MII 18%, p &lt;0.0001) protocols, respectively. Limitations, reasons for caution - Wider implications of the findings Tissue engineering scaffold-based approach represents a valid strategy generating a multi-organ in-vitro system, where different compartments may cooperate generating the complexity of paracrine-mechanism controlling early-follicles outcomes. Scaffold topology is essential to control early-follicles development. Indeed, exclusively PCL-Patterned can preserve long-term follicle 3D-microarchitecture supporting in-vitro oogenesis up to a complete meiotic-competence-acquisition. Trial registration number not applicabl

    Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers

    Get PDF
    Nanocomposites based on vinyl alcohol-containing polymers and nanostructured gold have been efficiently prepared by a UV photo-reduction process. The very fast process provided dispersed gold nanoparticles with average diameters ranging from 3 to 20 nm depending on the host polymer matrix and the irradiation time. Uniaxial drawing of the irradiated Au/polymer nanocomposites favours the anisotropic distribution of packed assemblies of gold particles, providing oriented films with polarization-dependent tunable optical properties. These pronounced dichroic properties suggest that the nanocomposite films could find potential applications as colour polarizing filters, radiation responsive polymeric objects and smart flexible films in packaging applications.16111058106

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form

    How do cardiologists select patients for dual antiplatelet therapy continuation beyond 1 year after a myocardial infarction? Insights from the EYESHOT Post-MI Study

    Get PDF
    Background: Current guidelines suggest to consider dual antiplatelet therapy (DAPT) continuation for longer than 12 months in selected patients with myocardial infarction (MI). Hypothesis: We sought to assess the criteria used by cardiologists in daily practice to select patients with a history of MI eligible for DAPT continuation beyond 1 year. Methods: We analyzed data from the EYESHOT Post-MI, a prospective, observational, nationwide study aimed to evaluate the management of patients presenting to cardiologists 1 to 3 years from the last MI event. Results: Out of the 1633 post-MI patients enrolled in the study between March and December 2017, 557 (34.1%) were on DAPT at the time of enrolment, and 450 (27.6%) were prescribed DAPT after cardiologist assessment. At multivariate analyses, a percutaneous coronary intervention (PCI) with multiple stents and the presence of peripheral artery disease (PAD) resulted as independent predictors of DAPT continuation, while atrial fibrillation was the only independent predictor of DAPT interruption for patients both at the second and the third year from MI at enrolment and the time of discharge/end of the visit. Conclusions: Risk scores recommended by current guidelines for guiding decisions on DAPT duration are underused and misused in clinical practice. A PCI with multiple stents and a history of PAD resulted as the clinical variables more frequently associated with DAPT continuation beyond 1 year from the index MI
    • …
    corecore