30 research outputs found

    New synthetic strategies for xanthene-dye-appended cyclodextrins

    Get PDF
    Xanthene dyes can be appended to cyclodextrins via an ester or amide bridge in order to switch the fluorescence on or off. This is made possible through the formation of nonfluorescent lactones or lactams as the fluorophore can reversibly cyclize. In this context we report a green approach for the synthesis of switchable xanthene-dye-appended cyclodextrins based on the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM). By using 6-monoamino-ÎČ-cyclodextrin and commercially available inexpensive dyes, we prepared rhodamine- and fluorescein-appended cyclodextrins. The compounds were characterized by NMR and IR spectroscopy and MS spectrometry, their UV–vis spectra were recorded at various pH, and their purity was determined by capillary electrophoresis. Two potential models for the supramolecular assembly of the xanthene-dye-appended cyclodextrins were developed based on the set of data collected by the extensive NMR characterization

    Mechanistic Insights into the Vanadium-Catalyzed Achmatowicz Rearrangement of Furfurol

    No full text
    The Achmatowicz rearrangement is a powerful method for the construction of pyranones from simple furan derivatives. Here, we describe the development of improved reaction conditions and an interrogation into the fate of the metal center during this interesting transformation. The reaction to form the synthetically important lactol, 6-hydroxy-2<i>H</i>-pyran-3­(6<i>H</i>)-one (<b>3</b>), proceeds cleanly in the presence of <i>tert</i>-butyl hydroperoxide (TBHP, <b>2</b>) using low loadings of VO­(O<sup><i>i</i></sup>Pr)<sub>3</sub> as catalyst. The nonaqueous conditions developed herein allow for easy isolation of product <b>3</b> and synthetically important derivatives, a key advantage of this new protocol. Detailed experimental, spectroscopic, and kinetic studies along with kinetic modeling of the catalytic cycle support a positive-order dependence in both furfurol and TBHP concentrations, first-order dependence in catalyst (VO­(O<sup><i>i</i></sup>Pr)<sub>3</sub>), and a <i>negative</i> dependence on the 2-methyl-2-propanol (<b>4</b>) concentration. <sup>51</sup>V-NMR spectroscopic studies revealed that 2-methyl-2-propanol (<b>4</b>) competes with substrates for binding to the metal center, rationalizing its inhibitory effect

    Inter-kingdom conservation of mechanism of nonsense-mediated mRNA decay

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is a quality control system that degrades mRNAs containing premature termination codons. Although NMD is well characterized in yeast and mammals, plant NMD is poorly understood. We have undertaken the functional dissection of NMD pathways in plants. Using an approach that allows rapid identification of plant NMD trans factors, we demonstrated that two plant NMD pathways coexist, one eliminates mRNAs with long 3â€ČUTRs, whereas a distinct pathway degrades mRNAs harbouring 3â€ČUTR-located introns. We showed that UPF1, UPF2 and SMG-7 are involved in both plant NMD pathways, whereas Mago and Y14 are required only for intron-based NMD. The molecular mechanism of long 3â€ČUTR-based plant NMD resembled yeast NMD, whereas the intron-based NMD was similar to mammalian NMD, suggesting that both pathways are evolutionarily conserved. Interestingly, the SMG-7 NMD component is targeted by NMD, suggesting that plant NMD is autoregulated. We propose that a complex, autoregulated NMD mechanism operated in stem eukaryotes, and that despite aspect of the mechanism being simplified in different lineages, feedback regulation was retained in all kingdoms
    corecore