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Abstract
Xanthene dyes can be appended to cyclodextrins via an ester or amide bridge in order to switch the fluorescence on or off. This is

made possible through the formation of nonfluorescent lactones or lactams as the fluorophore can reversibly cyclize. In this context

we report a green approach for the synthesis of switchable xanthene-dye-appended cyclodextrins based on the coupling agent

4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM). By using 6-monoamino-β-cyclodextrin and

commercially available inexpensive dyes, we prepared rhodamine- and fluorescein-appended cyclodextrins. The compounds were

characterized by NMR and IR spectroscopy and MS spectrometry, their UV–vis spectra were recorded at various pH, and their

purity was determined by capillary electrophoresis. Two potential models for the supramolecular assembly of the xanthene-dye-

appended cyclodextrins were developed based on the set of data collected by the extensive NMR characterization.
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Introduction
Cyclodextrins (CDs) are cyclic oligosaccharides consisting of 6,

7 or 8 glucopyranose units (α-, β- and γ-CD, respectively).

Native CDs do not adsorb light in the UV–vis region

(200–800 nm), but they can be converted into spectroscopically

active compounds by modification with a chromophore/fluoro-

phore unit. Fluorophore-appended CDs can be appropriate

systems to detect spectroscopically inert molecules by guest-in-

duced spectroscopic changes associated with the formation of

inclusion complexes. These fluorescent CDs exhibit remark-

able molecular recognition abilities, discriminating shape, bulk-

iness and polarity of the guests [1,2]. Furthermore, CDs can be

directly modified with fluorophores for labeling in order to

assess if these versatile molecules cross biological barriers (e.g.,

cell membrane, blood–brain barrier) and to follow their distri-

bution in living matter [3].

Among the fluorescent dyes, the group of fluorophores based on

xanthene scaffolds is one of the most popular. Two representa-
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Figure 1: Structures of fluorescent xanthene dyes. Rhodamine B·HCl 1 and fluorescein disodium salt 2.

tives of this class are fluorescein and rhodamine (Figure 1),

which have been applied as chemosensors [4] and have been

widely exploited in various areas such as cell biology, micros-

copy, biotechnology, and ophthalmology due to their versatile

photophysical properties. However, the chemical modification

of this evergreen class of dyes is still an ongoing process [5,6].

Fluorescein is the most widely used fluorescent probe in biolog-

ical applications and in particular for covalently labeling pro-

teins. Rhodamine derivatives are robust dyes that find applica-

tion as fluorophores for microscopy, in cell sorting, in photody-

namic therapy and in colorimetric enzymatic tests (ELISA).

Although it is possible to modify xanthene dyes with specific

functional groups (e.g., isothiocyanates, maleimide, succin-

imidyl), enabling them to react with amine groups, such chemi-

cal modifications dramatically affect the cost of the dye because

of the laborious purification process. In order to reduce cost,

one approach is to perform the condensation reaction that leads

to the formation of the xanthene dyes by using previously func-

tionalized reagents [7]. This approach is difficult to generalize

and does not involve a common synthetic plan for different

xanthene dyes since their core is different. Another possibility is

to modify less expensive, unfunctionalized, commercially avail-

able xanthene dyes; for instance, both rhodamine B and fluores-

cein are commercially available at a reasonable price. Since the

presence of a carboxylic moiety is a common feature to most of

the xanthene-based dyes, it is easy to develop a common syn-

thetic plan for the activation of the dye toward biological

systems based on the modification of this functional group. The

most logical way for generating an active dye able to target an

amine-bearing system would be the formation of an amide

bond. However, in spite of the numerous attempts, the modifi-

cation of this specific position still (at least in a bio-compatible

environment) remains a challenge. In the case of rhodamine, the

modification of the carboxylic moiety, to the best of our know-

ledge, is always performed in organic solvent under harsh

conditions [8].

The synthesis and the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-

yl)-4-methylmorpholinium chloride (DMT-MM) as a coupling

agent for the formation of amides and esters was first reported

by Kunishima et al. [9]. This compound possesses advanta-

geous properties as it can be prepared in gram scale from inex-

pensive reagents, it is stable in air, it does not adsorb water, and

the water soluble co-products formed during the coupling reac-

tion can be easily removed from the reaction crude. All these

characteristics make DMT-MM a convenient tool for the syn-

thesis of amides and esters [10].

The first example of xanthene-dye-appended cyclodextrin based

on the modification of the carboxylic moiety of the fluorophore

was reported by Ueno’s group [11]. In the study, they modified

6-monotosyl-β-CD with the sodium salt of fluorescein, result-

ing in a fluorescein β-CD derivative connected through an ester

bond. The main idea of the synthetic step was to promote the

nucleophilic substitution between 6-monotosyl-β-CD and the

carboxylate of the fluorescein by adjusting the pH of the

aqueous solution around pH 6 [12]. Some years later the same

group reported on a fluorescein-modified γ-CD and its proper-

ties as a sensor and as a charge-changeable receptor for

detecting organic acids [13]. The synthetic strategy was still

based on the ester formation between the fluorophore and the

CD scaffold, but the conditions were slightly modified. As a

starting material, 6-monoiodo-γ-CD was chosen instead of the

more labile 6-monotosyl-γ-CD and anhydrous DMF (under

nitrogen atmosphere) substituted for the aqueous environment

of the previous β-CD coupling.

The first rhodamine-modified CD was reported by Harada [14].

6-Monoamino-α-CD was coupled with rhodamine B in the

presence of N,N'-dicyclohexylcarbodiimide (DCC) and

hydroxybenzotriazole (HOBt) in anhydrous DMF under

inert atmosphere in order to connect the two moieties through

an amide bond. The fluorescent CD derivative was used to

observe the movement of a rotaxane immobilized on glass sub-

strates.
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Hasegawa et al. [15] were the first to develop rhodamine

labeled CDs for biological purposes. They synthesized two dif-

ferent fluorescent β-CDs and showed their utility as new fluoro-

genic probes for monitoring pH of HeLa cells. The synthetic

strategy was based first on the modification of the CD scaffold

with two different linkers (both polyamines) and then on the

coupling of the terminal amino group of the linkers with

rhodamine B. The coupling conditions were slightly different

from those reported by Harada [14]. The solvent was a mixture

of pyridine and DMF, the activating agents for the carboxylic

acid were HOBt and 1-ethyl-3-(3-dimethylaminopropyl)carbo-

diimide (EDC).

Fang and co-workers designed a ratiometric sensor for detecting

mercury ions in aqueous media, some biological fluids and

living cells based on a rhodamine-modified β-CD [16]. The syn-

thetic strategy was a three-step procedure: rhodamine B was

modified into a spirolactam rhodamine ethylenediamine,

6-monotosyl-β-CD was reacted with ethylenediamine in order

to obtain the equivalent monosubstituted derivative, and finally,

the coupling between the two molecules was performed. The

coupling with the 6-mono(2-aminoethylamino)-β-CD was ob-

tained by in situ conversion of the terminal amino group of the

fluorophore into isothiocyanate group.

To summarize, fluorescein has been connected to CDs through

an ester bond by performing the reaction in water or DMF. Al-

though the synthetic procedure is well described, the experi-

mental synthesis steps and the purification process are not de-

scribed in enough detail. The characterization of the molecule is

not exhaustive since a clear indication of the ester formation is

missing. Rhodamine has been connected in organic solvents

through an amide bond with DCC or EDC as coupling agents.

The molecules have not been characterized in detail since only

partial spectroscopic data have been reported.

In this study, we developed a general, green, and inexpensive

method for the synthesis of xanthene-appended CDs. Since

most of the xanthene dyes possess a carboxylic moiety (only a

few examples are known that lack this moiety) we based our

strategy on the formation of an amide bond. In particular, we

reacted 6-monoamino-β-CD (NH2-β-CD) with fluorescein and

rhodamine in alkaline aqueous media at room temperature in

the presence of the coupling agent DMT-MM, thus producing

the fluorescent derivatives. This method can not only be applied

to CDs, but may represent a new general approach for the modi-

fication of xanthene dye in water, thus affording amide or ester

derivatives.

When a fluorophore is used for the labeling of a single-isomer

CD, the resulting molecule is rarely the fully substituted, fluo-

rescent single-isomer CD; more commonly, the system is a mix-

ture of unsubstituted and substituted CD derivatives. Although

some data are reported in the literature for the characterization

of fluorescently labeled CDs, a full NMR characterization, to

the best of our knowledge, has never been presented and the

spectroscopic data always refer to the mixture obtained by an

incomplete fluorescent labeling and not to the fluorescent

single-isomer CD derivative. The incomplete fluorescent

tagging is reflected by, for example, broad NMR signals [17].

If the goal of the derivatization is the fluorescent labeling of a

randomly substituted CD derivative, the situation is even more

challenging. A suitable synthetic strategy for obtaining a homo-

geneous, fluorescent, randomly substituted CD derivative

(where each compound is modified with a fluorescent moiety)

is to perform the random substitution on a fluorescent single-

isomer CD [18]. If the substrate for the fluorescent labeling is a

randomly substituted CD derivative, most commonly, the ob-

tained mixture will contain fluorescently labelled and unlabeled

isomers.

In this work, our purpose was to develop a generic synthetic

method for the derivatization of CDs with commercially avail-

able xanthene dyes and to isolate and characterize the fluores-

cent compounds as single isomers.

Results and Discussion
In Figure 2, the reaction scheme for the rhodamine-appended

β-CD derivative (Rho-β-CD) is shown as a representative exam-

ple. The synthetic strategy is based on the condensation reac-

tion between an amine-bearing CD and the carboxyl moiety of

the xanthene dye promoted by the coupling agent DMT-MM. It

is accepted that the carboxylic acid has to be deprotonated in

order to generate an activated ester with DMT [19]. The acti-

vated species undergoes attack by the amine, thus generating

the desired amide bond.

The xanthene dyes, the β-CDs and the coupling agent are highly

soluble in water, thus allowing for a homogenous reaction that

occurs at room temperature. Since β-CD modified with amines

is more stable in the HCl form (in order to avoid decomposi-

tion), during the reaction, an additional base such as N-methyl-

morpholine (NMM) or NaOH is required. If amine-bearing CDs

are used as free bases, the additional base can be omitted. The

synthesis of the reactions simply consists of the selective

precipitation of the target compound with acetone and removal

of the unreacted dye by filtration. The purity of the starting dye

is a crucial parameter for the outcome of the reaction, since it

will greatly affect the crude composition and consequently the

purification process. If the purity of the starting dye is satisfac-

tory, selective precipitation/filtration are the only steps required
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Figure 2: Reaction scheme for the synthesis of rhodamine-appended β-CD.

Figure 3: TLC plates at different development stages for monitoring the composition of Rho-β-CD crude (left panel) and TLC for evaluating the effec-
tiveness of the work-up (right panels).

for obtaining a fluorescent-appended β-CD derivative of accept-

able purity (>90%, based on thin-layer chromatography (TLC)).

If the starting fluorophore is a mixture of fluorescent (but not

clearly identified) dyes, then chromatography is needed to

obtain the desired purity.

Rhodamine-appended β-CD
Rhodamine B in HCl form (Rho·HCl) was sourced in good

purity, allowing for a clean formation of the product with a very

low amount of rhodamine-related byproducts (not detectable by

TLC), a minute amount of two β-CD-related byproducts (see

ByP1-, ByP2-β-CD in TLCs in Figure 3, the sum of the two

being less than 5% based on the intensity of the spots on TLC-

5) and some unreacted NH2-β-CD (less than 5% based on the

intensity of the spots on TLC-5). The reaction was completed in

a couple of hours, at room temperature, in an aqueous environ-

ment. TLC provides an unambiguous identification of the prod-

uct, and the behavior of the product in the selected eluent gives

structural indication about the possible prototropic form

assumed from the dye in the conjugate.

The left panel of Figure 3 shows the TLC plates used for moni-

toring the composition of Rho-β-CD crude at different develop-

ment stages, and in particular, immediately after the removal
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Figure 4: 1H NMR spectrum of Rho-β-CD with partial assignments (D2O, 500 MHz, 298 K).

from the developing chamber (1), after heating (2), under UV

excitation at 254 nm (3), under UV excitation at 366 nm (4),

and finally, after charring (5). The right panels in Figure 3 show

the effectiveness of the selective precipitation/filtration during

the work-up and in particular it reveals that the unreacted dye

can be separated from the product (TLC-6, TLC-7 under UV

excitation at 254 nm and at 366 nm, respectively) while the

unreacted NH2-β-CD and the nonfluorescent ByP1-β-CD are

more challenging to remove (TLC-8, after charring).

In the left panel of Figure 3, the unreacted dye (Rho) is clearly

detectable at any stage of the development, while the product

(Rho-β-CD) is detectable only after heating the TLC plate and

appears as a slight pink spot (TLC-2 in Figure 3). This spot is

colored, strongly UV active, nonfluorescent and charrable

(TLC-2, -3, -4 and -5, respectively in Figure 3). The presence of

color and the charrability indicates that the compound contains

both the chromophore and the CD scaffold. The strong UV ac-

tivity and the nonfluorescence suggest that the chromophore is

prevalently in lactam form [20]. As it is also known that β-CD

has the ability to preferably complex the cyclic form of

rhodamine B [21], complexation may play a role in the stabi-

lization of the lactam form of the rhodamine-appended CD de-

rivative. All this information taken together confirms the pres-

ence of the product/conjugate and add to the structural elucida-

tion on the system.

Concerning the synthesis, the first part consists of the removal

of the unreacted dye with acetone. As shown in Figure 3, after

selective precipitation/filtration with acetone, most of the unre-

acted dye and ByP2-β-CD remain in the mother liquor (TLC-6,

TLC-7 in Figure 3). At this stage, the crude already has accept-

able purity (>90% based on TLC), but flash chromatography

with a CH3CN–H2O gradient elution permits the removal of the

remaining CD-related byproducts and further increases the

purity. After this additional purification step, the compound,

Rho-β-CD, has been extensively characterized by NMR spec-

troscopy.

NMR characterization of Rho-β-CD
The proton NMR spectrum shown in Figure 4 is a typical spec-

trum of an asymmetric cyclodextrin. The sharpness of the peaks

suggests the high purity of the compound.

The two constituent parts of the molecule can be easily recog-

nized in Figure 4. The resonances in the aromatic (5.5–8.0 ppm)

and aliphatic (0.5–1.5 ppm) regions belong to the rhodamine

moiety, while those observed between 2.5–5.5 ppm belong to
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Figure 5: Expansion of DEPT-ed-HSQC spectrum of Rho-β-CD with partial assignments (D2O, 500 MHz, 298 K).

the CDs and also include the methylene moieties of the fluoro-

phore. The integration of the signals perfectly fits the theoreti-

cal values for a monosubstituted rhodamine-β-CD derivative.

This is also confirmed by the found value of the pseudo-molec-

ular ion during the electrospray ionization mass spectrometry

(ESIMS) analysis (see Experimental part).

The resonance signals in the aromatic region are well resolved

(see Supporting Information File 1, Figure S1) and the cross-

linking with the data obtained by the COSY and DEPT-ed-

HSQC spectra (see Supporting Information File 1, Figures S2

and S3, respectively) allowed for the complete assignment (the

data are in agreement with the literature [22]). The multiplicity

of the signals can be clearly determined. This is not an obvious

characteristic for rhodamine-based CD derivatives since the ar-

omatic signals of these compounds are usually represented by

very broad signals. The presence of broad signals is character-

istic for randomly substituted compounds as the NMR signals

are made from the frequencies of all the compounds composing

the mixture. An incomplete fluorescent tagging of the starting

single-isomer β-CD (and/or inadequate purification), as well as

aggregation of the compound, can cause broadening of the

peaks [23].

In the proton spectrum in Figure 4, the good resolution in the

anomeric region can be appreciated; several doublets can be

clearly identified (see Supporting Information File 1, Figure

S4). The separation of the anomeric doublets is a fundamental

requisite for the complete assignment of an asymmetric mole-

cule [24]. The core of the CD region between 2.5–5.5 ppm

(Figure 4) is rather crowded and cannot be elucidated without

the use of 2D techniques. On the other hand, the two signals in

the aliphatic region can be easily assigned to the alkyl side

chains of the rhodamine. Another important set of information

that can be deduced/extrapolated from the careful analysis of

the spectrum in Figure 4 concerns the asymmetry of the mole-

cule. The proton spectrum of the rhodamine B both in lactone

(Supporting Information File 1, Figure S5) and HCl form (Sup-

porting Information File 1, Figure S6) shows only one kind of

signal for the alkyl groups (CH3 and CH2 in Supporting Infor-

mation File 1, Figures S5 and S6) and for the aromatic protons

of the xanthene moiety (protons E, F, G in Supporting Informa-

tion File 1, Figures S5 and S6). This means that the differentia-

tion in multiple NMR signals in the Rho-β-CD conjugate is

strictly related to the presence of the CD scaffold. Because of

the chirality of the cyclodextrin part, the two phenyl rings of the

xanthene moiety are formally diastereotopic, and consequently,

anisochronous even without any complexation. This fact can be

proven by recording the 1H NMR spectrum of the Rho-β-CD in

deuterated DMSO, a solvent known to dissociate inclusion

complexes (Supporting Information File 1, Figure S7). The

presence of two kinds of signals for the methyl units (at

1.06 ppm and 1.14 ppm) in the spectrum recorded in deuterated

DMSO confirms the aforementioned observation.

The analysis of the DEPT-ed-HSQC spectrum (see Supporting

Information File 1, Figure S8 for the full spectrum) gives

further information on the product. The compound is unambigu-

ously substituted on the primary side.

The frequencies at around 40 ppm (C6sub in Figure 5) corre-

spond to the methylene moiety of the glucose unit that bears the

fluorophore. The two frequencies have similar carbon signals,

but different protons since the two protons of the methylene unit
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are not magnetically equivalent (C6sub in Figure 5). The signals

of the anomeric region (Supporting Information File 1, Figure

S8) are very diffuse as those of the CD core. It is also possible

to distinguish the two signals of the methylene units of the side

chains of the rhodamine (around 47 ppm) from the unsubsti-

tuted methylene moiety of the glucose units (C6unsub in

Figure 5). The assignment of the frequencies of the alkyl chains

of the fluorophore is based on the 2D total correlation spectros-

copy (TOCSY) spectrum (Supporting Information File 1, Figure

S9), while the partial assignments of the C2 and C3 units

(Figure 5) are based on a combination of correlation spectrosco-

py (COSY) (Supporting Information File 1, Figure S2), DEPT-

ed-HSQC (Supporting Information File 1, Figure S8) and

TOCSY (Supporting Information File 1, Figure S9).

In the aromatic region of the DEPT-ed-HSQC spectrum (see

Supporting Information File 1, Figure S3) of Rho-β-CD, all ten

of the aromatic protons of the fluorophore can be clearly distin-

guished.

The carbon spectrum shows very sharp peaks (Supporting Infor-

mation File 1, Figure S10). The presence of a single carbon

signal (around 172 ppm) in the region of the carboxylic amide

unambiguously proves the effectivity of the coupling as well as

the purity of the compound.

The cross-linked analysis of the 2D rotating frame nuclear

Overhauser effect spectroscopy (ROESY) spectrum (Support-

ing Information File 1, Figures S11, S12 and S13) and the

DEPT-ed-HSQC spectrum (Supporting Information File 1,

Figure S14) generates a set of information useful for the deter-

mination of the spatial position of the fluorophore with respect

to the CD scaffolds and for the analysis of the preferred confor-

mation assumed by Rho-β-CD in solution. These data, together

with the results presented by Wang et al. [25] about the crystal

structure of rhodamine B in lactone form, allowed us to propose

the model shown in Figure 6 for the intermolecular inclusion

mode of Rho-β-CD. This model for the supramolecular

assembly is also in agreement with previous data about the

inclusion complexation of organic dyes with β-CD dimers [26].

In more detail, the analysis of the 2D ROESY spectrum reveals

that the methyl units of the rhodamine side chains that resonate

at 0.81 ppm (the side chains that are “uncomplexed”) show

cross peaks to 3.02 ppm (Supporting Information File 1, Figure

S12), 5.63 ppm and 6.02 ppm (Supporting Information File 1,

Figure S13). These three cross peaks are the result of intramo-

lecular interactions between the methyl units and the adjacent

methylene units of the rhodamine side chains (3.02 ppm) and

between the methyl units and the protons G (5.63 ppm) and E

(6.02 ppm) of the xanthene units (Supporting Information

Figure 6: Cartoon models for the possible intermolecular inclusion
mode of Rho-β-CD in solution (3D perspective view on the left and 3D
structural model on the right).

File 1, Figure S3), respectively. The two additional cross peaks

at 7.91 and 6.74 ppm are the result of the spatial interactions of

the methyl units with the protons A and D of the aromatic ring

adjacent to the spirolactam unit (Supporting Information File 1,

Figure S3). Assuming that the spirolactam is positioned perpen-

dicular to the plane described by the xanthene unit (as reported

in [25]), then the aforementioned, two additional cross peaks

are the result of intermolecular interactions (see models in

Figure 6).

The methyl signals at 1.15 ppm (the side chains that are

“complexed”) show several cross peaks indicating the diffused

spatial interactions between the side chains of the fluorophore

and the lower part of the cavity (carbons 3) of the CD scaffold

(cross peaks at 3.57, 3.77, 3.83, 4.03 ppm in Supporting Infor-

mation File 1, Figure S12). The same methyl moieties also

interact with the protons G’ and E’ (cross peaks at 6.24 ppm in

Supporting Information File 1, Figure S12 and cross peak at

6.27 ppm in Supporting Information File 1, Figure S13) of the

xanthene units (Supporting Information File 1, Figure S13). The

first set of cross peaks (at 3.57, 3.77, 3.83, 4.03 ppm) must be

the result of intermolecular interactions between fluorophore

units and a close CD scaffold since the xanthene moieties show

exclusively cross peaks with the lower part of CD cavity. If a

self-inclusion scenario would occur then one would expect a set

of cross peaks between the xanthene moiety, the primary side of

the CD (carbons 6) and the upper part of the cavity of the CD

(carbons 5); however, this was not detected in our case. The

second set of cross peaks (at 6.24 and 6.27 ppm in Supporting

Information File 1, Figures S12 and S13, respectively) is the

result of intramolecular forces due to the spatial proximity of

the methyl units to the adjacent aromatic ring of the xanthene

unit.
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It is also worth noting that the protons A and D of the aromatic

ring adjacent to the spirolactam unit (Supporting Information

File 1, Figure S3) at 7.91 and 6.74 ppm show cross peaks at

3.23 and 3.20 ppm (Supporting Information File 1, Figure S13),

respectively. These two frequencies correspond to the protons

of unsubstituted methylene groups of the CD unit (Figure 5 and

Supporting Information File 1, Figure S14). These intramolecu-

lar cross peaks are possible only if the plane of the aromatic

ring adjacent to the spirolactam ring is set parallel to the prima-

ry rim of the CD.

Finally, the aromatic protons that resonate at 6.19, 6.24, and

6.27 ppm (protons F’, G’, E’ in Supporting Information File 1,

Figure S3) show cross peaks at 3.3, 3.46, 3.77, 4.03 and

4.23 ppm as reported in Supporting Information File 1, Figures

S12 and S13. These last frequencies correspond to some of the

protons of the lower part of a CD cavity (carbons 3), suggesting

an intermolecular, partial complexation of the xanthene moiety

into a close CD cavity.

To summarize, the compound Rho-β-CD was obtained in high

purity and was thoroughly investigated by NMR spectroscopy.

The collected data unambiguously proved that the compound is

monosubstituted on the primary side. Morover, the analysis of

the NMR spectra revealed that the fluorophore is partially

complexed. The additional data obtained by the analysis of the

ROESY spectrum resulted in the proposed model (Figure 6) for

the intermolecular inclusion mode of the compound.

IR and UV–vis characterization of Rho-β-CD
In Supporting Information File 1, Figure S15 the IR spectra of

Rho-β-CD, rhodamine B in acidic form (Rho∙HCl) and

rhodamine B in lactone form (Rho-B lactone) are shown. The

analysis of the spectra unambiguously proved that the fluoro-

phore in Rho-β-CD is in lactam form. The frequency at

1755.9 cm−1 in the IR spectrum of Rho-B lactone belongs to the

carbonyl stretching of the γ-lactone moiety of the dye and this

value is very similar to that found in the carbonyl region of the

IR spectrum of Rho-β-CD at 1755.4 cm−1. This last frequency

is typical for the carbonyl stretching of a γ-lactam ring [27],

thus demonstrating that the fluorophore in Rho-β-CD is (if iso-

lated according to the procedure reported in the Experimental

section) in a nonfluorescent cyclic form.

The same conclusion can be also reached through the analysis

of the UV–vis spectra (Supporting Information File 1, Figure

S16). The UV–vis spectra of Rho-β-CD vary according to the

pH of the solution in a different manner compared to the free

rhodamine B. The free fluorophore shows a strong absorbance

at around 550 nm and maintains its fluorescence at any of the

examined pH (see Experimental section for details). In the case

of Rho-β-CD, this absorption maximum undergoes a

hypochromic shift at alkaline and neutral pH, and under these

conditions, the compound is not fluorescent. For the xanthene-

appended derivative, the UV maximum at around 550 nm only

appears at pH 3 (the absorbance increases with time) and under

these solution conditions, Rho-β-CD is a fluorescent compound.

The phenomenon can be easily explained on the basis of the

change of conformation of the fluorophore according to the pH.

The opening of the lactam ring is catalyzed by acidic condi-

tions, thus switching the equilibrium of the prototropic forms of

the dye towards the fluorescent amide form [28].

Fluorescein-appended β-CD
Fluorescein disodium salt (Flu-Na) was purchased in high

purity allowing the formation of the product, but with moderate

yield. For this reaction, several fluorescein-related byproducts

could be detected by TLC (Supporting Information File 1,

Figure S17) and the starting NH2-β-CD·HCl could be only

partially converted to Flu-β-CD (20–30% conversion based on

TLC). Although different attempts were made in order to en-

hance the conversion (such as tuning the pH of the reaction,

using NH2-β-CD as free base as starting material, replacing the

base NMM with NaOH and reacting the lactone form of the

fluorophore instead of the sodium salt), the improvements were

not substantial. The reason for the partial conversion under the

selected alkaline conditions can be related to the appearance of

several dye-related byproducts (ByP1-, ByP2-, ByP3-Flu in TLC

in Supporting Information File 1, Figure S17). Under the

selected aqueous alkaline conditions, the phenol moiety of the

fluorescein is mainly deprotonated and as phenolate can partici-

pate in the formation of fluorescein-based acyl derivatives (such

as esters or anhydride, see Supporting Information File 1,

Figure S17). The formation of these byproducts could lead to

depletion of the coupling agent by conversion to 2-hydroxy-4,6-

dimethoxy-1,3,5-triazine (DMM-OH) and could explaining the

moderate conversion of the starting material. It is worth empha-

sizing that the coupling of fluorescein based on DCC/HOBt in

organic solvents (as described in [14] for example) generates

even more complicated mixtures. As shown in the TLC in Sup-

porting Information File 1, Figure S14, an additional, nonfluo-

rescent, unidentified, CD-related byproduct (ByP1-CD) can be

clearly detected in the crude and the amount of this byproduct is

rather significant. As a consequence, the aqueous method based

on DMT-MM is more favorable in terms of the amount of the

product in the crude mixture and in terms of the purification of

the crude composition.

The removal of the unreacted dye as well as the dye-related by-

products can be achieved by selective precipitation/filtration

with acetone. Flash chromatography using a 10:5:1 (v/v/v)

CH3CN/H2O/NH4OH (25%) ratio as eluent permits the removal
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Figure 7: 1H NMR spectrum of Flu-β-CD with partial assignments (D2O, 500 MHz, 298 K).

of the unreacted NH2-CD-related impurities. At this stage the

compound, Flu-β-CD, has been extensively characterized by

spectroscopic techniques.

UV–vis characterization of Flu-β-CD
In Supporting Information File 1, Figure S18, the UV–vis spec-

tra of fluorescein disodium salt and of Flu-β-CD are shown.

Under acidic conditions (at pH 3), the UV–vis spectrum and the

fluorescence of the free dye changes remarkably. In particular,

the UV band at around 490 nm is almost completely suppressed

and the fluorescence, under irradiation at 366 nm, decreases

substantially. This behavior is in agreement with the formation

of the nonfluorescent lactone form under acidic conditions [12].

The lactone formation is mainly responsible for the fluores-

cence quenching of the dye. The UV–vis spectra of Flu-β-CD

resemble those of fluorescein, and the fluorescence of the com-

pound is heavily quenched at pH 3. By taking into considera-

tion all these data, one can assume that the fluorescein moiety

of Flu-β-CD exists mainly in the open amide form (at neutral

and alkaline pH) and that the compound acts as a complementa-

ry molecular switch to Rho-β-CD. While Rho-β-CD exhibits

fluorescence at acidic pH, Flu-β-CD shows fluorescence at both

neutral and alkaline pH.

NMR characterization of Flu-β-CD
The 1H NMR spectrum shown in Figure 7 is a typical spectrum

of an asymmetric cyclodextrin. The sharp and well-resolved

signal suggests the high purity of the compound.

The two constituent parts of the molecule can be easily recog-

nized in Figure 7. The signals in the aromatic region (between

6.0–8.0 ppm) belong to the fluorescein moiety, while the set of

signals between 2.2–5.5 ppm belongs to the CD. The integra-

tion of the signals corresponds to the theoretical values for a

monosubstituted, fluorescein-β-CD derivative, as also con-

firmed by the value of the pseudo-molecular ion found during

the ESIMS analysis (see Experimental section).

The signals in the aromatic regions are well resolved (Support-

ing Information File 1, Figure S19) and the analysis of H–H J
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coupling and the cross-linking with the data obtained by the

COSY and DEPT-ed HSQC spectra (Supporting Information

File 1, Figures S21, S22 and Supporting Information File 1,

Figure S24, respectively) allowed for a complete assignment of

the resonance frequencies. It is worth noting that all ten of the

aromatic protons of the fluorophore can be identified both in

DEPT-ed-HSQC and 1H NMR spectra. The possibility to

resolve all the aromatic protons of the dye in the 1H NMR spec-

trum (Supporting Information File 1, Figure S19) is related to

the asymmetry of Flu-β-CD. In the case of the free fluorescein

sodium salt, the resolution of the proton couples H7/H8, H6/H9,

H5/H10 is not possible without the addition of a resolving agent

(Supporting Information File 1, Figure S20).

In the 6.0–8.0 ppm region of the 1H NMR spectrum of Flu-β-

CD (Supporting Information File 1, Figure S19), two different

kinds of aromatic coupling can be detected. The different values

of the 3JH-H and 4JH-H couplings permit the unambiguous as-

signment of the coupled protons H5/H7 and H8/H10. In the

proton spectrum in Figure 7, the good resolution of the

anomeric region can be also appreciated; several doublets can

be clearly identified. The core of the CD region between

2.2–5.5 ppm (Figure 7) is rather crowded and cannot be easily

elucidated without the use of 2D techniques.

The analysis of the DEPT-ed-HSQC spectrum (Supporting

Information File 1, Figure S23 for the full spectrum) gives

further information on the product. The compound is unambigu-

ously substituted on the primary side.

The frequencies at around 44 ppm (C6sub in Supporting Infor-

mation File 1, Figure S25) belong to the methylene moiety of

the glucose unit that bears the fluorophore. The two frequen-

cies have similar carbon signals, but different protons since the

two protons of the methylene unit are not magnetically equiva-

lent (C6sub in Supporting Information File 1, Figure S25).

Further convincing proof that the compound is exclusively

substituted on the primary side arises from the analysis of the

HMBC spectrum of the compound (Supporting Information

File 1, Figure S27). In the 2D spectrum shown in Supporting

Information File 1, Figure S27, the cross peak between the car-

bon of the carboxamide at around 174 ppm and the proton of

the methylene moiety of the glucose unit that bears the fluoro-

phore (C6sub) at 2.92 ppm unambiguously confirms the struc-

ture of the compound.

The signals of the CD core and the partial assignments of the

C2, C3 and C4 (Supporting Information File 1, Figure S25) are

based on a combination of COSY (Supporting Information

File 1, Figures S21, S22), DEPT-ed-HSQC (Supporting Infor-

mation File 1, Figure S23), HMBC (Supporting Information

File 1, Figures S28, S29) and TOCSY (Supporting Information

File 1, Figure S26) spectra.

The carbon spectrum shows sharp resonances (Supporting

Information File 1, Figure S30). The presence of a single car-

bon signal (around 174 ppm) in the region of the carboxylic

amide proves the effectivity of the coupling and the purity of

the compound as well.

The cross-linked analysis of the 2D ROESY spectrum (Support-

ing Information File 1, Figures S31, S32, S33) and the DEPT-

ed-HSQC spectrum (Supporting Information File 1, Figures

S24, S25, S34, S35 and S36) generate a set of information use-

ful for the determination of the spatial position of the fluoro-

phore with respect to the CD scaffolds and for the analysis of

the preferred conformation assumed by the Flu-β-CD in solu-

tion. These data altogether allowed us to propose the model

shown in Figure 8 for the intermolecular inclusion mode of Flu-

β-CD.

Figure 8: Cartoon models for the possible intermolecular inclusion
mode of Flu-β-CD in solution (3D perspective view on the left and 3D
structural model on the right).

In more detail, the analysis of the 2D ROESY spectrum reveals

that the aromatic proton at 6.63 ppm (H4 in Supporting Infor-

mation File 1, Figure S24) shows cross peaks at 3.38 ppm (Sup-

porting Information File 1, Figure S32). This frequency corre-

sponds to a proton of an unsubstituted methylene unit on the

primary side of the CD (Supporting Information File 1, Figure

S34). Since protons H1, H2 and H3 (Supporting Information

File 1, Figure S24) do not show cross peaks with frequencies of

the CD unit, it seems reasonable to assume that while H4 is lo-
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cated in proximity of the primary rim, the remaining protons of

the aromatic ring are positioned externally to the primary rim

and far enough not to interact with the protons of the methylene

units (Figure 8).

The aromatic protons at 6.61 and 6.55 ppm (H7 and H6, respec-

tively, in Supporting Information File 1, Figure S24) show

several cross peaks as a consequence of the diffuse interaction

with a CD cavity. In particular, H7 shows cross peaks at 4.08,

4.01 and 2.94 ppm, and H6 at 3.86, 3.79, 3.46 and 2.98 ppm

(Supporting Information File 1, Figures S32, S33). The first set

of these frequencies corresponds to different C3 (Supporting

Information File 1, Figures S25, S34, S35, S36) while the

second one (with the only exception at 3.36 ppm that cannot be

unambiguously assigned) corresponds to protons located inside

the cavity (mostly C3). These findings prove that the aromatic

protons H7 and H6 interact extensively with the lower part of a

CD cavity.

The aromatic proton at 6.48 ppm (H5 in Supporting Informa-

tion File 1, Figure S24) shows cross peaks at 3.46, 3.35 and

2.98 ppm (Supporting Information File 1, Figures S32, S33);

these frequencies correspond to protons located inside the

cavity of a CD ring (Supporting Information File 1, Figures

S34, S35, S36). As a consequence, the ring of the xanthene

moiety that includes H5/H6/H7 interacts with the lower part of

a CD cavity. Since the fluorophore is connected through the pri-

mary side of the CD, it is reasonable to assume that this set of

interactions is the result of an intermolecular partial complex-

ation between the fluorophore of a specific molecule and the

lower part of the cavity of a second CD unit.

The last set of cross peaks in the aromatic region of the ROESY

spectra in Supporting Information File 1, Figures S32, S33 is

the result of the interactions between the aromatic proton at

6.44 ppm (H8 in Supporting Information File 1, Figure S24)

and the frequencies at 4.17, 4.05, 3.65 and 3.32 ppm (Support-

ing Information File 1, Figures S32, S33). These frequencies

correspond to protons of unsubstituted methylene units on the

primary side of a CD (Supporting Information File 1, Figures

S34, S35, S36). Since protons H9 and H10 (Supporting Infor-

mation File 1, Figure S24) do not show cross peaks with any

frequencies of the CD units, one can conclude that the xanthene

moiety of the fluorophore is not placed in a parallel way to the

primary rim of the CD. The plane of the xanthene moiety of the

fluorophore should be twisted above the primary side of the CD

in a way that H8 would be the only point of (intramolecular)

interaction with the upper rim of the CD cavity.

To summarize, the compound Flu-β-CD was obtained in high

purity and was thoroughly investigated by NMR spectroscopy.

The collected data unambiguously proved that the compound is

monosubstituted on the primary side. The analysis of the NMR

spectra revealed as well that the fluorophore is partially

complexed. The additional data obtained by the analysis of the

ROESY spectrum resulted in the proposed model (shown in

Figure 8) for the intermolecular inclusion mode of the com-

pound.

Conclusion
A novel green synthetic strategy for obtaining single isomer,

xanthene-appended cyclodextrin was developed. The synthetic

approach is based on commercially available fluorescent dyes

and coupling agents, thus having clear potential for multigram

scale-up. The mild, aqueous conditions, as well as the simplicity

of the synthesis, make these reactions attractive tools for the

preparation of fluorescent cyclodextrins connected through an

amide bond.

The obtained products were isolated in high purity and exten-

sively characterized by spectroscopic techniques. The in-depth

analysis of the collected sets of NMR data resulted in the pro-

posed models for the supramolecular interactions shown by the

compounds.

The isolated molecules can be applied in the fields of chemo-

sensing and bioimaging, while the mechanism behind the for-

mation of the versatile, supramolecular assemblies deserves

further investigation.

Supporting Information
Supporting Information File 1
Experimental section, including IR and NMR spectra of the

synthesized compounds.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-12-53-S1.pdf]
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