1,482 research outputs found

    Introduction

    Get PDF

    Analysis of D Pellet Injection Experiments in the W7-AS Stellarator

    Get PDF
    A centrifugal injector was used to inject deuterium pellets (with 3--5 x 10{sup 19} atoms) at approx. equal 600 m/s into current-less, nearly shear-less plasmas in the Wendelstein 7-AS (W7-AS) stellarator. The D pellet was injected horizontally at a location where the non-circular and non-axisymmetric plasma cross section is nearly triangular. Visible-light TV pictures usually showed the pellet as a single ablating mass in the plasma, although the pellet occasionally broke in two or splintered into a cloud of small particles. The density evolution following pellet injection and the effect of pellet injection on energy confinement and fluctuations are discussed

    Changes of intracellular sodium and potassium ion concentrations in frog spinal motoneurons induced by repetitive synaptic stimulation

    Get PDF
    A post-tetanic membrane hyperpolarization following repetitive neuronal activity is a commonly observed phenomenon in the isolated frog spinal cord as well as in neurons of other nervous tissues. We have now used double-barrelled Na+- and K+-ion-sensitive microelectrodes to measure the intracellular Na+- and K+-concentrations and also the extracellular K+-concentration of lumbar spinal motoneurons during and after repetitive stimulation of a dorsal root. The results show that the posttetanic membrane hyperpolarization occurred at a time when the intracellular [Na+] reached its maximal value, intracellular [K+] had its lowest level and extracellular [K+] was still elevated. The hyperpolarization was blocked by ouabain and reduced by Li+. These data support the previous suggestion that an electrogenic Na+/K+ pump mode may be the mechanism underlying the post-tetanic membrane hyperpolarization

    A pattern-recognition theory of search in expert problem solving

    Get PDF
    Understanding how look-ahead search and pattern recognition interact is one of the important research questions in the study of expert problem-solving. This paper examines the implications of the template theory (Gobet & Simon, 1996a), a recent theory of expert memory, on the theory of problem solving in chess. Templates are "chunks" (Chase & Simon, 1973) that have evolved into more complex data structures and that possess slots allowing values to be encoded rapidly. Templates may facilitate search in three ways: (a) by allowing information to be stored into LTM rapidly; (b) by allowing a search in the template space in addition to a search in the move space; and (c) by compensating loss in the "mind's eye" due to interference and decay. A computer model implementing the main ideas of the theory is presented, and simulations of its search behaviour are discussed. The template theory accounts for the slight skill difference in average depth of search found in chess players, as well as for other empirical data

    Optimizing the vertebrate vestibular semicircular canal: could we balance any better?

    Get PDF
    The fluid-filled semicircular canals (SCCs) of the vestibular system are used by all vertebrates to sense angular rotation. Despite masses spanning seven decades, all mammalian SCCs are nearly the same size. We propose that the SCC represents a sensory organ that evolution has `optimally designed'. Four geometric parameters are used to characterize the SCC, and `building materials' of given physical properties are assumed. Identifying physical and physiological constraints on SCC operation, we find that the most sensitive SCC has dimensions consistent with available data.Comment: 4 pages, 3 figure

    Size limits the formation of liquid jets during bubble bursting

    Get PDF
    A bubble reaching an air–liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 Όm. However, few studies have been devoted to small bubbles (R<100 Όm) despite the entrainment of a large number of such bubbles in sea water. Here we show that jet formation is inhibited by bubble size; a jet is not formed during bursting for bubbles smaller than a critical size. Using ultrafast X-ray and optical imaging methods, we build a phase diagram for jetting and the absence of jetting. Our results demonstrate that jetting in bubble bursting is analogous to pinching-off in liquid coalescence. The coalescence mechanism for bubble bursting may be useful in preventing jet formation in industry and improving climate models concerning aerosol production

    The physical oceanography of the transport of floating marine debris

    Get PDF
    Marine plastic debris floating on the ocean surface is a major environmental problem. However, its distribution in the ocean is poorly mapped, and most of the plastic waste estimated to have entered the ocean from land is unaccounted for. Better understanding of how plastic debris is transported from coastal and marine sources is crucial to quantify and close the global inventory of marine plastics, which in turn represents critical information for mitigation or policy strategies. At the same time, plastic is a unique tracer that provides an opportunity to learn more about the physics and dynamics of our ocean across multiple scales, from the Ekman convergence in basin-scale gyres to individual waves in the surfzone. In this review, we comprehensively discuss what is known about the different processes that govern the transport of floating marine plastic debris in both the open ocean and the coastal zones, based on the published literature and referring to insights from neighbouring fields such as oil spill dispersion, marine safety recovery, plankton connectivity, and others. We discuss how measurements of marine plastics (both in situ and in the laboratory), remote sensing, and numerical simulations can elucidate these processes and their interactions across spatio-temporal scales
    • 

    corecore