319 research outputs found

    A Variational Shape Optimization Approach for Image Segmentation with a Mumford-Shah Functional

    Get PDF
    We introduce a novel computational method for a Mumford–Shah functional, which decomposes a given image into smooth regions separated by closed curves. Casting this as a shape optimization problem, we develop a gradient descent approach at the continuous level that yields nonlinear PDE flows. We propose time discretizations that linearize the problem and space discretization by continuous piecewise linear finite elements. The method incorporates topological changes, such as splitting and merging for detection of multiple objects, space–time adaptivity, and a coarse-to-fine approach to process large images efficiently. We present several simulations that illustrate the performance of the method and investigate the model sensitivity to various parameters

    Gas-Phase Temperature Mapping of Evaporating Microdroplets

    Get PDF
    Evaporation is a ubiquitous and complex phenomenon of importance to many natural and industrial systems. Evaporation occurs when molecules near the free interface overcome intermolecular attractions with the bulk liquid. As molecules escape the liquid phase, heat is removed, causing evaporative cooling. The influence of evaporative cooling on inducing a temperature difference with the surrounding atmosphere as well as within the liquid is poorly understood. Here, we develop a technique to overcome past difficulties encountered during the study of heterogeneous droplet evaporation by coupling a piezo-driven droplet generation mechanism to a controlled micro-thermocouple to probe microdroplet evaporation. The technique allowed us to probe the gas-phase temperature distribution using a micro-thermocouple (50 mu m) in the vicinity of the liquid-vapor interface with high spatial (+/- 10 mu m) and temporal (+/- 100 ms) resolution. We experimentally map the temperature gradient formed surrounding sessile water droplets having varying curvature dictated by the apparent advancing contact angle (100 degrees less than or similar to theta less than or similar to 165 degrees). The experiments were carried out at temperatures below and above ambient for a range of fixed droplet radii (130 mu m less than or similar to R less than or similar to 330 mu m). Our results provide a primary validation of the centuries-old theoretical framework underpinning heterogeneous droplet evaporation mediated by the working fluid, substrate, and gas thermophysical properties, droplet apparent contact angle, and droplet size. We show that microscale droplets residing on low-thermal-conductivity substrates such as glass absorb up to 8x more heat from the surrounding gas compared to droplets residing on high-thermal-conductivity substrates such as copper. Our work not only develops an experimental understanding of the heat transfer mechanisms governing droplet evaporation but also presents a powerful platform for the study and characterization of liquid-vapor transport at curved interfaces wetting and nonwetting advanced functional surfaces

    Synthesis of niobium-alumina composite aggregates and their application in coarse-grained refractory ceramic-metal castables

    Get PDF
    Niobium-alumina aggregate fractions with particle sizes up to 3150 µm were produced by crushing pre-synthesised fine-grained composites. Phase separation with niobium enrichment in the aggregate class 45–500 µm was revealed by XRD/Rietveld analysis. To reduce the amount of carbon-based impurities, no organic additives were used for the castable mixtures, which resulted in water demands of approximately 27 vol.% for the fine- and coarse-grained castables. As a consequence, open porosities of 18% and 30% were determined for the fine- and coarse-grained composites, respectively. Due to increased porosity, the modulus of rupture at room temperature decreased from 52 MPa for the fine-grained composite to 11 MPa for the coarse-grained one. However, even the compressive yield strength decreased from 49 MPa to 18 MPa at 1300 °C for the fine-grained to the coarse-grained composite, the latter showed still plasticity with a strain up to 5%. The electrical conductivity of fine-grained composite samples was in the range between 40 and 60 S/cm, which is fifteen magnitudes above the values of pure corundum

    Comparison of life quality of pregnant adolescents with that of pregnant adults in Turkey

    Get PDF
    Objectives. This study aimed to determine the quality of life of pregnant adolescents aged < 20 years and pregnant adults aged between 20-29 years, to evaluate the effects of gestational periods on the quality of life, and to compare the quality of life scores of pregnant adolescents and adults

    Python as a Federation Tool for GENESIS 3.0

    Get PDF
    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be ‘glued’ together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience
    corecore