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A Variational Shape Optimization Approach for Image Segmentation with
a Mumford-Shah Functional

Abstract
We introduce a novel computational method for a Mumford–Shah functional, which decomposes a given
image into smooth regions separated by closed curves. Casting this as a shape optimization problem, we
develop a gradient descent approach at the continuous level that yields nonlinear PDE flows. We propose time
discretizations that linearize the problem and space discretization by continuous piecewise linear finite
elements. The method incorporates topological changes, such as splitting and merging for detection of
multiple objects, space–time adaptivity, and a coarse-to-fine approach to process large images efficiently. We
present several simulations that illustrate the performance of the method and investigate the model sensitivity
to various parameters.
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A VARIATIONAL SHAPE OPTIMIZATION APPROACH FOR
IMAGE SEGMENTATION WITH A MUMFORD–SHAH

FUNCTIONAL∗

GÜNAY DOĞAN† , PEDRO MORIN‡ , AND RICARDO H. NOCHETTO§

Abstract. We introduce a novel computational method for a Mumford–Shah functional, which
decomposes a given image into smooth regions separated by closed curves. Casting this as a shape
optimization problem, we develop a gradient descent approach at the continuous level that yields non-
linear PDE flows. We propose time discretizations that linearize the problem and space discretization
by continuous piecewise linear finite elements. The method incorporates topological changes, such
as splitting and merging for detection of multiple objects, space–time adaptivity, and a coarse-to-
fine approach to process large images efficiently. We present several simulations that illustrate the
performance of the method and investigate the model sensitivity to various parameters.

Key words. image segmentation, Mumford–Shah, shape optimization, finite element method
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1. Introduction. Image segmentation and image smoothing are two fundamen-
tal tasks in image processing. The goal of image segmentation is to extract uniform
regions and their boundaries from given images, where uniformity is defined with re-
spect to some image features, such as image intensity. Image smoothing, on the other
hand, is the process of reducing the variation in image intensity. For example, we can
perform image smoothing to reduce the noise content of a given degraded image. In
general we would like to apply a selective version of image smoothing, only within
uniform regions but not across the boundaries of the regions. The intrinsic connection
between the image segmentation and denoising is thus apparent. In fact, one reason-
able strategy would be to couple both problems and to pursue them simultaneously.
This is exactly what the Mumford–Shah model does, and the main theme of this pa-
per is a novel computational method to solve a certain variant of the Mumford–Shah
model; see (1.2)–(1.3) and Figure 1.1.

Mumford and Shah propose the following optimization problem in [19]:

(1.1) min
u,K

{
1

2

∫
D

(u− I)2dx +
μ

2

∫
D\K

|∇u|2dx + γ length(K)

}
.

The goal of this minimization is to find the set of discontinuities K, or the edge
set, and a piecewise smooth approximation u of a given image intensity function
I : D ⊂ R

2 → R. However, the problem is hard in this form, as the two variables
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I(x) discontinuities foreground background

Fig. 1.1. The Mumford–Shah model performs simultaneous segmentation and denoising of im-
ages. From left to right, the figures show the original noisy synthetic image, the set of discontinuities
obtained, the denoised foreground, and the denoised background.

u, K of the optimization are of very different natures; the edge set K may be quite
general and may exhibit singularities. So a method that approximates (1.1) directly is
yet to be found. Instead several attempts have been made to substitute (1.1) by close
problems that are more suitable for computation. One idea, studied by Ambrosio
and Tortorelli [1], is to approximate the edge set K with a diffuse edge set function
v and use Γ-convergence to examine their relation. Finite element solutions for this
approach have been investigated in [4], [13]. We stress that the diffuse interface
approach focuses mostly on image smoothing because a decomposition of the image
into distinct regions and region boundaries is not directly available. An alternative
approach, proposed by Vese and Chan [24] and by Tsai, Yezzi, and Willsky [23],
minimizes the following energy with respect to closed curves Γ:

(1.2) J(Γ) =
2∑

i=1

1

2

(∫
Ωi

(ui − I)2 + μ|∇ui|2
)
dx + γ

∫
Γ

dS,

where ui are obtained from

(1.3)

{
−μΔui + ui = I in Ωi,

∂ui

∂νi
= 0 on ∂Ωi

with i = 1, 2. The curves Γ partition the image domain D into a foreground Ω1 (inside
the curves) and a background Ω2 = D\Ω1 (outside the curves). Then the piecewise
smooth approximation u is given by u = u1χΩ1

+ u2χΩ2
.

With the Vese–Chan approach, we obtain a segmentation of the image into Γ,
Ω1, Ω2. A simple example is depicted in Figure 1.1. Image smoothing happens
as a by-product but is not the main emphasis. Moreover, the set of discontinuities
is constrained to be simple closed curves; therefore, in its basic form, the method
always yields a two-region or foreground–background segmentation. Vese and Chan
[24] and Tsai, Yezzi, and Willsky [23] propose enhancements to handle cases with
triple junctions and multiple regions. They represent Γ as a level set function and
thus convert the problem into a curve evolution problem. Each iteration consists
of solving the PDE (1.3) by finite differences and next moving the curve Γ in the
L2 gradient descent direction. This process is, however, computationally intensive.
Hintermüller and Ring propose an inexact Newton-CG-type optimization scheme [18],
resulting in significantly fewer iterations than the L2 gradient descent, at the expense
of additional computational cost per iteration.

In this paper, as in [18], [23], [24], we use the Mumford–Shah model (1.2)–(1.3)
for image segmentation and also pursue a shape optimization approach. The main
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difference of our approach and those in [18], [23], [24] is that rather than using a level
set function to represent Γ, Ω1, Ω2 implicitly, we use a polygon for Γ and conforming
triangulations for Ω1 and Ω2 to represent them explicitly. This results in a Lagrangian
shape optimization scheme. We formulate the problem in an infinite-dimensional set-
ting, which yields nonlinear PDE flows. Motivated by computational efficiency, we
discretize in time, thereby linearizing the problem, and then discretize in space by the
finite element method (FEM) for additional flexibility. In the level set approach to
Mumford–Shah, one performs the optimization on a uniform mesh, which typically
coincides with the image grid. In contrast, we decouple the computational meshes
from the image grid, which allows us to generate and modify meshes at our conve-
nience. Typically our method deals with at most several thousands of unknowns per
iteration. This translates into significant reduction in computation for large images.
Furthermore, we incorporate a number of additional features into our algorithm, very
beneficial for practical examples, resulting in an efficient and robust segmentation
algorithm. These are the following:

• Choice of descent directions. Our method allows for easy incorporation of dif-
ferent descent directions, in addition to the L2 descent. In particular an inexact
Newton descent direction based on [18] can be adopted for faster convergence.
These variations are typically major for the level set approach, in terms of both
implementation and computation. Interestingly, for our method, a single inexact
Newton step turns out to require less computation than the L2 gradient step.
This is in contrast with [18].

• Space adaptivity. As we do not discretize directly on the image grid, we need
to avoid missing important image features. This is accomplished through image-
based adaptivity. The mesh is refined where the image varies more but is kept
coarse elsewhere. Furthermore, geometric adaptivity ensures that curves are rep-
resented accurately by concentrating nodes in regions of large curvature. Space
adaptivity is crucial for balancing accuracy and computational cost.

• Topological changes. General-purpose image segmentation algorithms do not re-
quire a priori knowledge of the number or topology of objects in the image.
Therefore, during the optimization process, curves should be able to merge or
split to recover arbitrary optimal configurations. This is handled automatically
by the level set method but not by explicit Lagrangian approaches. We imple-
ment a suitable topology surgery.

• Multilevel optimization. Two major issues in practice are computational cost
and local minima. To address both of them at once, we introduce a heuristic
multilevel strategy: we start with a relatively coarse discretization and tighten
the error tolerances in space–time adaptivity as we approach a minimum. We
found this strategy advantageous for both computational cost and avoiding local
minima.

In addition to its algorithmic advantages, the explicit Lagrangian representation
is by itself useful. It gives us direct access to the individual components forming
the background and the foreground, and we can easily examine properties, such as
shape, area, and other possible statistics. In the level set case, they are embedded
in the level set function and we need to extract them first to do further processing.
When the optimization terminates, we immediately have all the individual objects
and the boundaries explicitly without any need for postprocessing. As a by-product,
this also yields a sparse representation for the image: the curves, triangulations, and
approximation u require significantly less storage than the input image.
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The rest of the paper is organized as follows. In section 2, we review the ba-
sic shape differential calculus to deal with the Mumford–Shah functional (1.2). In
section 3, we introduce the system of nonlinear PDEs that enables us to compute gra-
dient descent directions for (1.2). We also describe the L2 and weighted H1 descent
directions and their relative merits. In section 4, we discretize the system of PDEs
from section 3, first in time and next in space. We investigate stability properties
and describe the resulting linear systems and how to solve them. In section 5, we
introduce procedures for time-step selection, topology surgery, space adaptivity, and
the multilevel algorithm. We conclude our paper with several experiments in sec-
tion 6. They document properties and performance of our variational method, as well
as explore the model sensitivity to parameters μ and γ.

2. Shape sensitivity analysis. We recall some definitions and results that will
help us derive the gradient descent flows to implement the minimization of (1.2). Our
main references for these are [9] and [22]. Let D be the image domain, an open and
bounded set in R

2. We denote by Γ the union of a finite set of simple closed curves
of class C2 and by Ω the domain enclosed by Γ (another possibility is to let Ω be the
complement of the enclosed region). We define the tangential gradient ∇Γh of a given
function h ∈ C2(D) as

∇Γh =
(
∇h− ∂νh ν

)
|Γ,

where ν denotes the unit normal vector to Γ, pointing outward Ω. For �W ∈ [C1(D)]2,

we define the tangential divergence of �W by

(2.1) divΓ
�W =

(
div �W − ν ·D �W · ν

)
|Γ,

where D �W denotes the Jacobian matrix of �W . Given the Hessian D2h of h and
curvature κ of Γ, the Laplace–Beltrami operator ΔΓ on Γ is defined as follows:

(2.2) ΔΓh = divΓ(∇Γh) =
(
Δh− ν ·D2h · ν − κ ∂νh

)
|Γ.

The velocity method. To evaluate the effect of a particular choice of deforma-
tion or velocity �V on the energy J(Γ) of a curve Γ, we need to state the relationship

between �V and the sequence of curves {Γt}t≥0 it induces. Given �V , each point x ∈ Ω0

(the domain enclosed by the initial curve Γ0) is continuously deformed by the system

of (autonomous) ODEs defined by �V :

(2.3)
dx

dt
= �V (x(t)) ∀t ∈ [0, T ], x(0) = X,

where X ∈ Ω0 = Ω. This defines the mapping x(t, ·) : X ∈ Ω → x(t,X) ∈ R
2 and

also the deformed curves and domains

(2.4) Γt = {x(t,X) : X ∈ Γ0}, Ωt = {x(t,X) : X ∈ Ω0}.

This formalization is the basis of the velocity method in shape optimization and it
will allow us to examine the effect of �V on J(Γ). It turns out that the normal velocity

V := ν · �V is the key component of �V in this context.

Shape calculus. Let J(Γ) be a shape functional. The shape derivative, of the

functional J(Γ) at Γ, in the direction of the vector field �V is defined as the limit

(2.5) dJ(Γ; �V ) = lim
t→0

1

t

(
J(Γt) − J(Γ)

)
.
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Let H be a Hilbert space of vector fields. The functional J(Γ) is said to be shape

differentiable at Γ in H if the shape derivative dJ(Γ; �V ) exists for all �V ∈ H and the

mapping �V → dJ(Γ; �V ) is linear and continuous on H. We define dJ(Ω; �V ) similarly.
We define shape derivatives of functions as well. Given a function φ(·,Ω) : Ω → R

that itself depends on the geometric variable Ω, we can define its material derivative
φ̇(Ω; �V ) at Ω in direction �V as follows:

(2.6) φ̇(Ω; �V ) = lim
t→0

1

t

(
φ(x(t, ·),Ωt) − φ(·,Ω0)

)
,

where the mapping x(t, ·) is defined by (2.3). A similar definition holds for functions
ϕ(·,Γ) : Γ → R that depend on boundaries Γ (see [22, Def. 2.71, Def. 2.85, Def. 2.88]).

Then the shape derivative φ′(Ω; �V ) of φ at Ω in direction �V is defined to be

(2.7) φ′(Ω; �V ) = φ̇(Ω; �V ) −∇φ · �V .

For boundary functions ϕ(·,Γ), the shape derivative is defined to be

(2.8) ϕ′(Γ; �V ) = ϕ̇(Γ; �V ) −∇Γϕ · �V |Γ.

For concreteness, let us give some examples of functions with dependence on geometric
variables. These are φ = φ(x,Ω) = φ(x, uΩ), where uΩ is the solution of a PDE on
Ω, and ϕ = ϕ(x,Γ) = ϕ(x, κ), where κ is the curvature of Γ. Note that for functions
φ = φ(x), ψ = ψ(x) that do not depend on the geometric variables Ω, Γ, the shape

derivatives φ′(Ω; �V ), ψ′(Γ; �V ) are equal to zero.

Finally we define the second shape derivative d2J(Γ; �V , �W ) of J(Γ) at Γ with

respect to vector fields �V , �W as

(2.9) d2J(Γ; �V , �W ) = d(dJ(Γ; �V ))(Γ; �W ).

This provides second order shape sensitivity information for shape functionals and it
is useful in designing faster Newton-type optimization schemes. We refer to the books
[9] and [22] for more information on tools of shape calculus and relevant results.

Shape derivative of length and PDE (1.3). If J(Γ) =
∫
Γ
dS, then

(2.10) dJ(Γ; �V ) =

∫
Γ

κV dS

is its first shape derivative in the direction �V ; recall that V = ν · �V . If ui = ui(Ωi)

satisfies (1.3), we can likewise compute their first shape derivative u′
i,V = u′

i(Ωi; �V )
[9], [18], [22]:

(2.11)

{
−μΔu′

i,V + u′
i,V = 0 in Ωi,

∂u′
i,V

∂νi
= divΓ(V∇Γui) + 1

μ (I − ui)V on ∂Ωi.

Shape derivatives of the Mumford–Shah functional. Combining (2.10)
and (2.11) it is possible to derive the following first derivative for (1.2)–(1.3):

dJ(Γ; �V ) =

∫
Γ

(1

2

[[
|u− I|2

]]
+

μ

2

[[
|∇Γu|2

]]
+ γκ

)
V dS,
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where [[f ]] = f1 − f2 stands for the jump of f across Γ. This was derived by Vese
and Chan using a level set representation [24] and by Hintermüller and Ring [18]
employing shape differential calculus. Computing the second shape derivative is more
involved, and we refer to [18]:

(2.12)

d2J(Γ; �V , �W ) = γ

∫
Γ

∇ΓV · ∇ΓWdS +

∫
Γ

βVWdS

+

∫
Γ

(
[[(u− I)u′

W ]] + μ [[∇u · ∇u′
W ]]

)
V dS,

where β = −μ
2

[[
|∇Γu|2

]]
+ 1

2

(
κ
[[
|u− I|2

]]
+ ∂ν

[[
|u− I|2

]])
and u′

i,W = u′
i(Ωi; �W )

satisfies (2.11).
Note that both first and second shape derivatives depend only on the normal

components V,W of the velocity fields �V , �W . Therefore, from now on we prefer to
work with the scalar velocity fields V,W and thereby write dJ(Γ;V ), dJ2(Γ;V,W ).

3. Gradient descent flows. Having just computed shape derivatives for (1.2)–
(1.3), we can derive gradient descent velocities V as follows. First we introduce a
Hilbert space B(Γ), such as L2(Γ) or H1(Γ), and choose a continuous, coercive, and
symmetric bilinear form b(·, ·) on B(Γ). Next solve for V :

(3.1) b(V,W ) = −dJ(Γ;W ) ∀W ∈ B(Γ).

If B is the elliptic operator associated with b, namely, 〈BV,W 〉 = b(V,W ), then (3.1)
is equivalent to solving the following PDE on Γ:

(3.2) BV = −γκ− f,

where f = 1
2

[[
|u− I|2

]]
+ μ

2

[[
|∇Γu|2

]]
. If ‖ · ‖B(Γ) is the norm induced by b(·, ·), then

it turns out that the velocity V computed this way decreases the energy

(3.3) dJ(Γ;V ) = −b(V, V ) = −‖V ‖2
B(Γ) � 0.

An obvious choice for b(·, ·) is the L2(Γ) scalar product. This gives

〈V,W 〉 =

∫
Γ

VWdS = −
∫

Γ

(γκ + f)WdS ∀W ∈ B(Γ),

which is the L2 gradient flow of [23], [24]. Alternatively, we could choose b(·, ·) to
coincide with a weighted H1(Γ) scalar product and thereby deduce

〈V,W 〉H1(Γ) = 〈α∇ΓV,∇ΓW 〉 + 〈βV,W 〉 = −
∫

Γ

(γκ + f)WdS ∀W ∈ B(Γ),

where α = α(x,Γ), β = β(x,Γ) are some positive functions. The strong form of this
equation is the PDE on Γ

(3.4) −divΓ(α∇ΓV ) + βV = −γκ− f,

which enforces additional smoothness on velocity V . This could be used to relax
the regularity requirement on the curve for velocity computation. While curvature κ
needs to be L2 for the L2 flow, (3.4) allows us to compute velocity with less regular
κ. Among the many possibilities to specify α and β, we are interested in one specific
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choice: the one coming from the second shape derivative (2.12). Observe that (2.12)
has a structure similar to a weighted H1 scalar product but it may not be positive
definite in general. However, we can make use of a modified version upon choosing

(3.5) α = γ, β =
1

2

(
κ
[[
|u− I|2

]]
+ ∂ν

[[
|u− I|2

]]
− μ

[[
|∇u|2

]] )
+

with (·)+ := max(·, ε) for a given ε > 0 and omitting the last term in (2.12) as it is
known to be negative definite (see [18]). The resulting velocity V corresponds to an
inexact Newton descent direction, an idea first proposed by Hintermüller and Ring
[18]. We will use this bilinear form in our experiments to obtain faster convergence.

Given a curve Γ, (3.2) by itself is not enough. We need a way to compute the

curvature κ and eventually the vector velocity �V to move the curve. For this, we recall
the differential geometry relation �κ = −ΔΓ

�X, first proposed by Dziuk for computation
(see [8]). This relation is just an equivalent formula for the usual definition �κ = �rss(s)
of the curvature vector given an arc-length periodic parametrization of the curve
�r : R → R

2. Instead of the parametrized representation, we work with the function
�X : R

2 → R
2 on the plane, which, when restricted to Γ, yields the (x, y) coordinates

of the point on the curve. Just as we differentiate parametrized Γ(s) twice to obtain
�κ (in effect computing tangential derivatives), we apply the operator ΔΓ = divΓ∇Γ

to each component of �X to compute �κ. We use the minus sign to be consistent with
the convention that a circle with outward unit normal �ν has positive scalar curvature
κ. Proceeding as in [3], [11], we introduce the following system of nonlinear PDEs
on Γ:

(3.6) �κ = −ΔΓ
�X, κ = �κ · �ν, BV = −γκ− f, �V = V �ν.

4. Discrete gradient flows. In this section we describe the discretization of
(3.6), which replaces Γ(t) by a sequence of polygonal curves {Γn}n�0 such that
J(Γn+1) � J(Γn). We first introduce the time discretization that linearizes (3.6).
We then discuss the space discretization based on the FEM with linear polynomials.
We also explain how to solve the resulting linear systems.

4.1. Time discretization. To discretize the gradient flow (3.1) in time, we

choose a time step τ > 0 and update the current position vector �Xn of Γn by

(4.1) �Xn+1 = �Xn + τ �Vn+1

to determine Γn+1. Although we refer to τ as a time step and frequently call the
process curve evolution, it is in fact an instance of a shape optimization problem and
τ is a step-size in the descent direction �Vn+1. The first step is the computation of the

descent direction �Vn+1. To this end, we propose the minimization problem

(4.2) �Vn+1 = νn+1Vn+1 := argmin�V

(
J(Γn + τ �V ) +

1

2τ
b(τ �V , τ �V )

)
.

The second term can also be viewed as regularization for the velocity. The following
is the optimality condition for (4.2), which mimics (3.1):

(4.3) b(Vn+1,W ) = −dJ(Γn+1;W ) ∀W ∈ B(Γn).

This equation reveals the highly nonlinear nature of this implicit discretization. In
fact, we need to determine Vn+1 upon solving a PDE on Γn+1 which is unknown.
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To circumvent this difficulty, we propose below either explicit or semi-implicit time-
stepping schemes. In both cases, we compute ui,n from (1.3) in Ωi,n and next Vn+1 on
the current polygonal Γn. This splitting leads to linear PDEs. A key issue is whether
there are time-step restrictions due to stability. We show that the only restriction is
due to handling geometry properly, but not to stability.

The explicit scheme. In view of (3.6) and (4.3), a simple approach to find
�Vn+1 is the explicit scheme: find ui,n from the PDE (1.3) in domains Ωi,n and next

�κn = −ΔΓn
�Xn,(4.4)

κn = �κn · �νn,(4.5)

BnVn+1 = −γκn − fn,(4.6)

�Vn+1 = Vn+1�νn.(4.7)

While this is a relatively efficient way to compute �Vn+1 and thus is preferred in
practice, it might be prone to instabilities. This is because the velocity equation (4.6)
includes the curvature term, or geometric diffusion term.

Stability of the explicit scheme. This time discretization is definitely unstable for
the L2 gradient flow, but it is stable for the weighted H1(Γ) scalar product if α > 0.
To gain some insight, we take α, β > 0 constant and consider the curve Γn to be a
graph of a function Un with a small variation. In this case, the new curve Γn+1 can
be described by a function Un+1 satisfying the following approximation of (4.6):

(4.8) −αΔδUn+1 + βδUn+1 = γΔUn − fn

with periodic boundary conditions and δUn+1 := 1
τn

(Un+1 − Un) being the velocity
Vn+1. This is thus a time discretization of −αΔUt + βUt − γΔU = −f . We can now
multiply (4.8) by −ΔUn+1, integrate by parts, and add over n to infer that

α‖ΔUN+1‖2 + β‖∇UN+1‖2 ≤ α‖ΔU0‖2 + β‖∇U0‖2

+ 2

N∑
n=0

τn

(
γ‖ΔUn+1‖‖ΔUn‖ + ‖fn‖‖ΔUn+1‖

)
.

Young’s inequality, together with the mild restriction τn/τn−1 ≤ Λ (see section 5.1),
implies that

α‖ΔUN+1‖2 + β‖∇UN+1‖2 ≤ (α + τ0)‖ΔU0‖2 + β‖∇U0‖2 +

N∑
n=0

τn‖fn‖2

+ (1 + γ + γΛ)

N∑
n=0

τn‖ΔUn+1‖2.

Applying Gronwall’s inequality we conclude that

α‖ΔUN+1‖2 + β‖∇UN+1‖2

≤
(

(α + τ0)‖ΔU0‖2 + β‖∇U0‖2 +

N∑
n=0

τn‖fn‖2

)
exp

(
(1 + γ + γΛ)

N∑
n=0

τn

)
,
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and the discretization is thus stable irrespective of the choice of the time steps τn.
This is in sharp contrast with the case α = 0 (the L2 flow), since explicit time stepping
of the heat equation is unstable without space discretization. This argument provides
insight into the stability of the weighted H1 inner product and rules out the use of
the L2 scalar product in conjunction with (4.4)–(4.7).

The semi-implicit scheme. We now describe a time discretization that can be
used for both the L2 and H1 gradient flows. The essence of the scheme is to compute
curvature and velocity implicitly in (3.6) which, upon imposing (4.1), translates into

the linear system of PDEs: find (�κn+1, κn+1, Vn+1, �Vn+1) such that

�κn+1 + τnΔΓn
�Vn+1 = −ΔΓn

�Xn,(4.9)

κn+1 − �κn+1 · �νn = 0,(4.10)

BnVn+1 + γκn+1 = −fn,(4.11)

�Vn+1 − Vn+1�νn = 0,(4.12)

and fn is computed from ui,n on Ωi,n. This semi-implicit scheme was employed in [2],
[3], [11] to solve other problems, some in shape optimization.

Stability of the semi-implicit scheme. We prove unconditional stability for the L2

flow. For this, we take α = 0, β = 1 and proceed as in [2], [3], [12]. We start by
multiplying (4.11) with κn+1 and integrating to obtain

〈Vn+1, κn+1〉 + γ‖κn+1‖2 = −〈fn, κn+1〉.

Multiplying (4.12) with �κn+1 and (4.10) with Vn+1, we easily arrive at

〈�Vn+1, �κn+1〉 = 〈Vn+1, �κn+1 · �ν〉 = 〈κn+1, Vn+1〉,

whence

(4.13) 〈�Vn+1, �κn+1〉 + γ‖κn+1‖2 = −〈fn, κn+1〉.

On the other hand, multiplying (4.9) with τn�Vn+1 and observing that τn�Vn+1 =
�Xn+1 − �Xn yields

(4.14) τn〈�Vn+1, �κn+1〉 − 〈∇Γ
�Xn+1,∇Γ( �Xn+1 − �Xn)〉 = 0.

Multiplying (4.13) by τn and substituting into (4.14) we infer that

〈∇Γ
�Xn+1,∇Γ( �Xn+1 − �Xn)〉 + γτn〈κn+1, κn+1〉 = −τn〈fn, κn+1〉.

Applying the inequality ab � εa2 + 1
4εb

2 with ε = γ
2 , a = κn+1, b = −fn,

〈∇Γ
�Xn+1,∇Γ( �Xn+1 − �Xn)〉 + τnγ‖κn+1‖2 � τn

γ

2
‖κn+1‖2 +

τn
2γ

‖fn‖2,

whence, using the inequality |Γn+1| − |Γn| � 〈∇Γ
�Xn+1,∇Γ( �Xn+1 − �Xn)〉 [2],

|Γn+1| − |Γn| + τn
γ

2
‖κn+1‖2 � τn

2γ
‖fn‖2.

Summing up over n, from 0 to m− 1, yields the stability estimate

|Γm| + γ

2

m−1∑
n=0

τn‖κn+1‖2
L2(Γn) ≤ |Γ0| +

1

2γ

m−1∑
n=0

τn‖fn‖2
L2(Γn).
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4.2. Finite element discretization. We assume that iteration n is fixed in
this discussion and avoid writing it for convenience. The discretization of (1.3) is
fairly standard. Let T Ωi = T Ωi

n be a shape-regular but possibly graded mesh of
triangular finite elements over the domain Ωi and let {ψj}Ij=1 be the set of canonical

basis functions of the finite element space V(Ωi) of continuous polynomials over T Ωi .
We thus have a conforming approximation V(Ωi) of H1(Ωi). If 〈f, g〉Ωi =

∫
Ωi

fg dx,

the discrete version of (1.3) reads as follows: find ui ∈ V(Ωi) such that

(4.15) μ〈∇ui,∇ψ〉Ωi + 〈ui, ψ〉Ωi
= 〈I, ψ〉Ωi

∀ψ ∈ V(Ωi).

We now focus on the finite element discretization of (4.4)–(4.7) and (4.9)–(4.12).
Let Γ := Γn be a polygonal curve, and let T = Tn be a graded partition of Γ into
line segments. Let T ∈ T be a generic finite element and let �νT = (νjT )j=1,2 be the
unit normal to T pointing outward Ω1. We denote by �ν the unit normal to Γ, defined
locally by �ν|T = �νT for all T ∈ T . Let {φj}Ij=1 be the canonical basis functions of
the finite element space V(Γ) of continuous piecewise linear functions over T , and set
�V(Γ) := V(Γ)2. We thus have a conforming approximation V(Γ) of H1(Γ).

The explicit scheme. We multiply (4.4)–(4.7) by test functions φ ∈ V(Γ) and
�φ ∈ �V(Γ) and integrate by parts those terms involving ΔΓ. We thus arrive at the fully

discrete problem: seek �V ,�κ ∈ �V(Γ), V, κ ∈ V(Γ), such that

〈�κ, �φ〉 = 〈∇Γ
�X,∇Γ

�φ〉 ∀�φ ∈ �V(Γ),(4.16)

〈κ, φ〉 = 〈�κ · �ν, φ〉 ∀φ ∈ V(Γ),(4.17)

〈α∇ΓV,∇Γφ〉 + 〈βV, φ〉 = −γ〈κ, φ〉 − 〈f, φ〉 ∀φ ∈ V(Γ),(4.18)

〈�V , �φ〉 = 〈V, �φ · �ν〉 ∀�φ ∈ �V(Γ).(4.19)

The semi-implicit scheme. We multiply (4.9)–(4.12) by test functions φ ∈
V(Γ) and �φ ∈ �V(Γ) and again integrate by parts. We obtain the fully discrete problem:

seek �V ,�κ ∈ �V(Γ), V, κ ∈ V(Γ), such that

〈�κ, �φ〉 − τ〈∇Γ
�V ,∇Γ

�φ〉 = 〈∇Γ
�X,∇Γ

�φ〉 ∀�φ ∈ �V(Γ),(4.20)

〈κ, φ〉 − 〈�κ · �ν, φ〉 = 0 ∀φ ∈ V(Γ),(4.21)

〈α∇ΓV,∇Γφ〉 + 〈βV, φ〉 + γ〈κ, φ〉 = −〈f, φ〉 ∀φ ∈ V(Γ),(4.22)

〈�V , �φ〉 − 〈V, �φ · �ν〉 = 0 ∀�φ ∈ �V(Γ).(4.23)

4.3. Matrix formulation. The matrix formulation for (4.15) is well known, so
we skip it here. We turn our attention to the matrix formulation of the fully discrete
problems (4.16)–(4.19) and (4.20)–(4.23). Given the matrix entries

Mβi,j := 〈βφi, φj〉, Mi,j := 〈φi, φj〉, �Mi,j := Mi,j
�Id,

�Ni,j := (Nk
i,j)

2
k=1 := 〈φi, φjν

k〉2k=1,

Ai,j := 〈∇Γφi,∇Γφj〉, Aαi,j := 〈α∇Γφi,∇Γφj〉, �Ai,j := Ai,j
�Id,

with �Id ∈ R
2×2 being the identity matrix, (�ek)

2
k=1 the canonical basis of R

2, and
νk = �ν · �ek, the corresponding matrices are

Mβ := (Mβi,j)
I
i,j=1, M := (Mi,j)

I
i,j=1, �M := ( �Mi,j)

I
i,j=1, �N := ( �Ni,j)

I
i,j=1,

Aα := (Aαi,j)
I
i,j=1, A := (Ai,j)

I
i,j=1, �A := ( �Ai,j)

I
i,j=1.
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We use the convention that a vector of nodal values of a finite element function is
written in boldface: V = (Vi)

I
i=1 ∈ R

I is equivalent to V =
∑I

i=1 Viφi ∈ V(Γ). We

point out that �M, �A, and �N possess matrix-valued entries and therefore the matrix-

vector product is understood in the sense �M �V =
(∑I

j=1
�Mi,j

�Vj

)I
i=1

, each component

�Vi of �V, as well as each of �M �V, is itself a vector in R
2.

We are now in a position to write the desired matrix formulations. Upon expand-
ing the unknown scalar functions V,K ∈ V(Γ) and vector functions �V , �K ∈ �V in terms

of the basis functions and setting φ = φi and �φk = φ�ek, we easily arrive at the linear
system of equations:

explicit scheme semi-implicit scheme

�M �K = �A�X, −τ �A�V + �M �K = �A�X,

MK = �NT �K, MK − �NT �K = 0,

(Aα + Mβ)V = −γMK−f , (Aα + Mβ)V + γMK = −f ,

�M �V = �NV, �M �V − �NV = �0.

4.4. Solving the linear system. The linear system corresponding to the finite
element discretization of (4.15), the domain PDE, has been studied extensively in
literature, and effective strategies exist. In our experiments, the size of the linear
system was at most several thousands. So a direct linear solver was appropriate for
our problem. We used UMFPACK [6] for this purpose.

We now describe how to solve the linear systems for the velocity equations. But
first we make an important observation. If the order of the nodal values in the vectors
and matrices is arranged following the connectivity pattern of the nodes, then the
matrices have a particular form with circulant tridiagonal blocks on their diagonals
(except for �N). Each block corresponds to a single closed curve and looks like

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 c1 b1
b2 a2 c2

b3 a3
. . .

. . .
. . . cm−1

cm bm am

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If the block is not singular, we can invert it with O(m) operations using a variant
of the Gaussian elimination algorithm. Then the block diagonal matrix can also be
inverted with linear time complexity. This property was also noted in [17] for a related
image segmentation problem.

The explicit scheme. Now given the linear system for the explicit system
(4.16)–(4.19), we can solve for the velocity �V as follows:

(4.24)

�K = �M−1 �A�X,

K = M−1 �NT �K,

V = (Aα + Mβ)−1(−γMK−f),

�V = �M−1 �NV.

Because of the special structure of the coefficient matrices M, �M,Aα+Mβ as described
above, we can invert these easily in linear time.
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The semi-implicit scheme. The solution of the semi-implicit system (4.20)–
(4.23) is a bit more involved compared to the explicit system. We first rewrite the
system as

(4.25)

⎛
⎜⎜⎝

�M 0 0 − �N

0 M − �NT 0

−τ �A 0 �M 0
0 γM 0 Aα + Mβ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�V
K
�K
V

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
�A�X
−f

⎞
⎟⎟⎠

and next eliminate the variables to arrive at the Schur complement system

(4.26) (γτ �NT �M−1 �A �M−1 �N + Aα + Mβ)V = −f − γ �NT �M−1 �A�X.

This system is to be solved at each time step. Since (4.26) is symmetric and positive
definite, we can solve it efficiently using the conjugate gradient (CG) method. A
couple of improvements can accelerate the convergence of CG. The first is to use a
good initial guess. Since the value of γ for our test problems is in general small, at
most 10−2, we can expect the following system to be close to (4.26):

(Aα + Mβ)V = −f − γ �NT �M−1 �A�X.

The second improvement is to use a good preconditioner for CG. Since we need to
approximate the inverse of (τγ �NT �M−1 �A �M−1 �N + Aα + Mβ), again (Aα + Mβ)−1 is
a natural candidate when γ is small. These two enhancements accelerate CG signifi-
cantly because the action of (Aα + Mβ)−1 can be computed with linear complexity.

5. The main algorithm. The FEM of section 4 requires several computational
enhancements to be effective on practical examples. We describe them in this section.

We stress that our method is driven by curve evolution. This is consistent with the
fact that our primary goal is segmentation, namely, detection of the region boundaries.
So we start each iteration with the curve mesh and generate the domain meshes
inside and outside the curve, using TRIANGLE (see Shewchuk [21]). We first solve
the domain PDE (1.3) for ui, next solve (4.24)(c) or (4.26) for scalar velocity V,

and compute vector velocity �V = M−1 �NV. With �V at hand, we move the curve Γ
according to �X + τ �V. There are yet a number of issues that we need to address:

• choosing a suitable time step (or step-size) for each iteration of the optimization;
• handling curve and domain meshes efficiently and accurately;
• implementing topological changes for curves, such as merging and splitting.

The last item is crucial as we would like the capability to detect multiple objects in
given images without a priori knowledge of their number or topology. We describe
how to handle these three issues below. The resulting scheme is given in Algorithm 1.

5.1. Time adaptivity. We consider two aspects of the choice of time step: first,
its role in the optimization process, and second, its impact on the quality of the curve
mesh. An effective time step should reduce the energy with the given velocity. To
ensure this, we employ a backtracking strategy; we move the curve with the given
velocity and current time step and compute the energy. If the energy is not reduced,
we halve the time step and check again. We repeat this until we obtain a time step
that gives energy decrease. Here a line search approach is also possible, for example,
based on the Armijo conditions, as proposed in [17], [18].
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Algorithm 1. The main algorithm.

choose an initial curve Γ0

compute dJ(Γ0; ·)
repeat

adapt curve Γ geometrically
generate and adapt domain meshes Ωi

solve domain PDE (1.3) in Ωi

compute velocity �V on Γ with the explicit or the semi-implicit scheme
use backtracking to choose time step τ
move the curve Γ with �V and τ
detect intersections, perform topological changes if necessary
compute dJ(Γ; ·)

until |dJ(Γ; ·)| � δ1|dJ(Γ0; ·)| + δ0

On the other hand, we also need to be vigilant for the impact of the time step
on the quality of the curve mesh. Large time steps may cause mesh distortion and
mesh entanglement by neighboring nodes crossing each other. To avoid these, we
utilize the time-step control scheme proposed by Bänsch, Morin, and Nochetto in
[3] and also used in [11]. Its main idea is to prevent nodes of the same element a

relative tangential displacement greater than the size of the element. If �V1, �V2 are
the velocities at the two nodes of a line element, then the time step τ should satisfy
τ |(�V1 − �V2) · �t | ≈ τh|∇Γ

�V | � ετh, where �t is the unit tangent vector, h is the size of
the element, and ετ is a specified tolerance.

5.2. Space adaptivity. The procedures described below help tune mesh res-
olution with respect to geometry and data. The goal is to balance accuracy and
computational cost by mesh refinement where resolution is needed and mesh coars-
ening where resolution is unnecessary. We realize this as follows:
• geometry adaptivity for curves to represent shapes well;
• data-driven adaptivity for domains to obtain accurate smooth approximations ui.

Geometry adaptivity for curves. This idea was introduced by Bänsch, Morin,
and Nochetto in [3], was further used in [11], and consists of approximating the
second fundamental form. This reduces to curvature κ for planar curves and suggests
concentrating nodes where Γ varies most, and so κ is largest. Since the pointwise
accuracy in representing a curve by a polygonal is proportional to h2

T |κ|, and κ is
accessible through our scheme, we impose h2

T |κ| ≤ εgeom for each element T on Γ. We
then refine if h2

T |κ| > εgeom or coarsen if h2
T |κ| � εgeom.

Data-driven adaptivity for domains. The accuracy of solution ui of (1.3) in
the domain Ωi depends on sufficient resolution of the image I. The meshes generated
with TRIANGLE can be properly graded to resolve the image well. For this purpose,
we introduce some error indicators that help us evaluate the local mesh resolution.
Since a posteriori error estimation is well developed for elliptic PDEs, one might be
inclined to resort to a posteriori error estimators to guide adaptivity. However, it
is questionable whether such an off-the-shelf approach would be adequate for shape
optimization for the following reasons:
• It is possible to go through very bad domains in the intermediate stages of the

optimization, which are unrelated to the final shape. One may thus waste un-
necessary computational effort by concentrating on accurate recovery over such
domains.
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Fig. 5.1. Input image (left) and computational mesh (right) created using the data-driven adap-
tivity algorithm of section 5.2. The mesh is finer where the image varies more and coarser in smooth
regions, thereby allowing for an accurate representation of the image with a low computational cost.

• Through the shape optimization process, we always have an approximation of
the domain and no direct clue of the exact domain. Therefore, pretending to
have the exact domain may be counter productive. Mumford and Shah show in
[19] that the only singularities that the set K can contain are triple points and
cracks. Since we restrict ourselves to the case where K is a union of closed curves
in (1.2), these are guaranteed to be smooth by this result. So refining to capture
possible reentrant corners in K is unjustified (in fact wasteful from the viewpoint
of computation).

An alternative is to have adaptivity driven by data resolution. If ΠhI denotes the
piecewise polynomial interpolant of the given image I in the current finite element
space, then we check the L2 error between ΠhI and I:

‖I − ΠhI‖L2(Ωi) � εdata
|Ωi|
|D| .

If this is violated, we refine the elements with largest error. This is illustrated in
Figure 5.1. Let us note that this will give finer triangulations than necessary since
the solutions ui in Ωi are smooth. On the other hand, we reduce computational effort
by not re-solving the PDE to calculate the error estimators for several iterations of
an adaptivity loop. A similar idea has been used by Fried to obtain an initial finite
element mesh in [14].

5.3. Topological changes. The level set formulation of Mumford–Shah has one
important advantage [18], [23], [24]: the ability to carry out topological changes such
as merging and splitting of curves automatically. This is not the case for a Lagrangian
approach, such as ours, and so additional work is necessary. Nevertheless, we have also
implemented this capability. The topology procedure consists of four steps executed
at the end of each iteration of the evolution:

• Detect. The line sweeping algorithm is used to detect whether curves intersect.
If there are intersections, then topological surgery needs to be carried out.

• Adjust. The local resolution of the curve is adjusted at intersection locations
to account for degenerate cases, such as multiple elements intersecting the same
element.

• Reconnect. The intersecting elements are reconnected to obtain the correct re-
sulting curves.

• Clean-up. Possible superfluous curves created by the previous step are deleted.
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Fig. 5.2. A simple example of a topological change: intersection is detected, local resolution is
adjusted, intersecting elements are reconnected, and the new curve is obtained.

The first step of the procedure has O((n + I) log n) time complexity where n is the
number of elements and I is the number of intersections. (See [7] for more information
on the line-sweeping procedure.) The remaining steps have linear time complexity.
We illustrate the topology procedure with a simple example in Figure 5.2. We refer
to [10] for more details on the implementation of the topology surgery procedure.

5.4. A multilevel algorithm. In image processing, a commonly used heuristic
is to compute the solution on a coarsely sampled image, for example, one obtained
by an image pyramid, and to use this as an initial guess for the computations on the
higher-resolution image. We also found a multilevel approach to be very beneficial
for this optimization problem. The main idea for this is to keep the computations as
coarse as possible when we are far away from the optimum and to refine the compu-
tations as we get closer. However, in contrast to the practice in image processing, the
basis of our approach is the discretization of the PDE, not the resolution of the image.
The motivation of our multilevel algorithm is twofold. First from the time-step side:
very careful time steps at the beginning of the optimization are not worth the effort.
This is true in particular with backtracking as we may need to solve the domain PDE
several times to compute the energy as part of backtracking. Thus we prefer to use
Ncoarse number of fixed time steps at the beginning. This hopefully brings us closer
to the optimum. Also in this stage, space adaptivity in domain is switched off and
space adaptivity on the curve is executed with εcoarse > εgeom. This results in coarser
curves, which also implies coarser triangulations, so these initial iterations are cheap.
Another very important benefit of this coarse stage is that it helps avoid local minima.

After the initial coarse stage, we take a continuation approach to tighten the
tolerance parameters of the space adaptivity procedures. We enforce better resolution
as we approach the minimum. Since the shape gradient becomes small close to the
minimum, we can use this as a way to determine when we should enforce higher
resolution in the following manner. We choose a sequence of gradient thresholds
∞ = dn > dn−1 > · · · > d1 > d0 = 0 and corresponding geometric adaptivity
tolerance factors εn � εn−1 � · · · � ε1 � εgeom and corresponding time steps τn �
τn−1 � · · · � τ1. Then at a given iteration k, if the magnitude of the shape gradient
|dJ(Γk; ·)| drops to the interval [di, di+1], i > 0, the adaptivity tolerance is set to be
εi and the time step is set to be τi. If |dJ(Γk; ·)| drops to [d1, d0], we use backtracking
for time-step selection. In our experiments we found that the use of two levels (i.e.,
n = 3) gives satisfactory results.

6. Numerical experiments. In this section we present a number of simula-
tions, which examine various properties of the model and the numerical scheme. We
implemented the discrete gradient flows of section 4 and the computational proce-
dures described in section 5 within the finite element toolbox ALBERTA [20]. The
space adaptivity parameters were set to εgeom = 0.03, εdata = 0.05. For the multilevel
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strategy, we used two levels and an initial coarse stage. The coarse stage consisted of
Ncoarse = 50 coarse iterations with time step τcoarse = 0.1 and geometric adaptivity
tolerance εcoarse = 3εgeom. Then at the first and second levels, the time steps and
adaptivity tolerances were set to τ1 = 0.02, ε1 = εgeom and τ2 = 0.04, ε2 = 2εgeom,
respectively. We used the bacteria, the galaxy, and the dandelion images from Wiki-
media Commons and the jet image from kiwiaircraftimages.com for our experiments.
These images are of size 580×488, 2212×1263, 1024×768, and 600×380, respectively.

Space adaptivity. We tested the effectiveness of space adaptivity. Geometric
adaptivity adjusts the curve resolution with respect to varying curvature. Data-driven
adaptivity, on the other hand, refines the domain meshes to resolve the variations in
the image function. This is illustrated with an example in Figure 5.1. Sample meshes
generated during the optimization are also shown in Figure 6.4.

Convergence properties of L2 flow versus H1 flow. As these two flows
yield different velocities, we used different time steps for each: τ1 = 0.2, τ2 = 0.4,
τcoarse = 1.0 for the L2 flow; τ1 = 0.02, τ2 = 0.04, τcoarse = 0.1 for the H1 flow.
We observed that the H1 flow converged in fewer iterations than the L2 flow and the
evolution of the curves was smoother. Moreover, a single H1 iteration was cheaper in
terms of computation than an L2 iteration. This is because for the H1 flow we were
able to use explicit time stepping. To be more specific, we were able to use (4.24c)
to compute the H1 velocity, which required a single matrix inversion with linear time
complexity. On the other hand, to compute the L2 velocity, we used (4.26) and solved
for V iteratively at a cost of several matrix-vector products with the coefficient matrix
(γτ �NT �M−1 �A �M−1 �N + Aα + Mβ). This aspect of our method is in contrast with the
level set implementation in [18], where a Newton-type step is more costly than an L2

gradient descent step. The results of the experiments on a bacteria image are given
in Figures 6.1, 6.2, and 6.3.

Denoising properties. The Mumford–Shah model (1.2) can be used for denois-
ing as well as segmentation. Thus we tested the model on images with varying degrees
of noise and obtained smoothed versions, such that the smoothing was confined to
the uniform regions and did not take place across boundaries. We observed that the
number of iterations required increased with the amount of noise. These results are
shown in Figures 6.5 and 6.6. We also observed that the performance on this problem
depended on the parameter μ. Smaller values of μ resulted in more iterations.

Dependence on model parameters. We examined the sensitivity of the re-
sults with respect to the model parameters μ and γ. The experiments were in agree-
ment with their role as weights in the energy (1.2). Increasing μ resulted in smoother
approximations, whereas increasing γ resulted in smoother curves. We observed, how-
ever, that depending on the input image, the segmentation result may be sensitive to
the parameter values. See Figures 6.7, 6.8, and 6.9.

Choice of initial curves. In the final set of experiments, we tested the model
sensitivity with respect to the choice of initial curves. In a number of examples, we
observed that we were able to attain qualitatively similar results starting with signifi-
cantly different initial curves; see Figure 6.10. It would nevertheless be misleading to
think that the algorithm produces the sought segmentation regardless of the choice of
initial curves. The energy (1.2) is nonconvex and at each step of the optimization we
make use of only local information, i.e., the shape derivatives. Therefore, we cannot in
general expect to obtain similar results starting with different initial curves, nor can
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we expect to end up with similar energy values. We can only expect to reach a local
minimum; see Figure 6.10(d). An important related question that we do not explore
in this paper is what would be a good starting configuration. Some ideas based on
topological derivatives have been proposed for related problems in [15] and [16].

Computational cost. In most of the experiments we obtained the segmentation
in less than a minute on a laptop computer with a P4 2.66 GHz processor and 512 MB
memory. We observed that this result depended not on the image resolution but
rather on the variation within the image. As our algorithm adapts the number of
elements with respect to variation or detail in the image, a higher amount of variation
results in more elements, thereby increasing the computational cost. This is why
our experiments on the noisy jet images took up to 3.5 minutes although the jet
image of Figure 6.6 has the smallest resolution. Through the optimization process,
the cost of computation was dominated by the domain solves. Although the cost of
a single domain solve and the curve computations in a single iteration were roughly
comparable, one step of the optimization routine with backtracking required multiple
domain solves, which added up. In the domain solves, about one-third of the cost
came from adaptivity and assembly of the linear system and about two-thirds came
from the solution of the linear system. Mesh generation introduced an additional
5% to 10% cost. On the other hand, curve computations were somewhat evenly
distributed among mesh adaptivity, assembly of the linear system, solution of the
linear system, topology corrections, and other overhead, with the linear solves having
a slightly larger share.

k = 1, J = 0.0267 k = 16, J = 0.0257 k = 26, J = 0.0185

k = 41, J = 0.0158 k = 66, J = 0.0148 k = 142, J = 0.0126

Fig. 6.1. Curve evolution by H1 flow. Segmentation of the bacteria image of size 580×488
using the H1 flow with parameters μ = 5 × 10−3, γ = 1.5 × 10−3. The H1 flow produced the
segmentation in 142 iterations and 43s. The curves Γ superimposed on the images, and energy
values J for the first, some intermediate, and last iterations are presented. The corresponding
piecewise smooth approximations ui are given in Figure 6.2.
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k = 1, J = 0.0267 k = 16, J = 0.0257 k = 26, J = 0.0185

k = 41, J = 0.0158 k = 66, J = 0.0148 k = 142, J = 0.0126

Fig. 6.2. Texture evolution by H1 flow. Evolution of the piecewise smooth approximation
u for the bacteria image obtained with the H1 flow and parameters μ = 5 × 10−3, γ = 1.5 × 10−3.
The corresponding curves are shown in Figure 6.1.

Fig. 6.3. Comparison of L2 flow and H1 flow. Segmentation and approximation results
for the L2 flow (top row) and the H1 flow (bottom row). The columns from left to right display the
curve evolution, the final segmentation, and the final smooth approximation u to the image. The
L2 flow converged in 586 iterations and 2m 51s. The H1 flow converged in 142 iterations, about
one-fourth of the L2 flow, and 43s. This illustrates the benefits of H1 flow with explicit time stepping
over a semi-implicit L2 flow, which are apparent although the L2 flow uses 400 coarse iterations, as
opposed to 100 for the H1 flow, to speed up the early computations.
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k = 20 k = 50 k = 142

Fig. 6.4. Background and foreground meshes. Snapshots of the finite element meshes
for Ω2 (top row) and Ω1 (bottom row) corresponding to the H1 flow. These meshes were generated
by TRIANGLE [21] from the curves Γ. Note that the mesh is locally refined in the last image as
data-driven adaptivity is switched on, after the initial coarse iterations, to resolve the variations in
the image.

k = 6, J = 0.0774 k = 21, J = 0.0455 k = 107, J = 0.0236

Fig. 6.5. Denoising. Use of the Mumford–Shah model (1.2) for image denoising using the H1

flow with parameters μ = 2×10−2, γ = 2×10−3. We added a 10% noise level to the image intensity
of a jet image of size 600× 380. As the optimization process tries to position the curve at the object
boundaries, the uniform regions are distinguished and the PDE (1.3) realizes the smoothing in these
regions. Our algorithm terminated in 107 iterations and 47s. The iteration counter k of the H1

flow and the corresponding energy values J are displayed. The top row shows the evolution of curve
Γ superimposed on the images, and the bottom row shows the evolution of the approximation u.
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k = 107, t = 47s k = 142, t = 1m 53s k = 208, t = 3m 27s

Fig. 6.6. Sensitivity to noise. Study of the impact of noise on the optimization process. We
added 10%, 25%, and 50% noise level to the jet image and computed the H1 flow for the Mumford–
Shah model (1.2) with parameters μ = 2 × 10−2, γ = 2 × 10−3. The computational results are
shown in the left, center, and right columns, respectively. The top row shows the computed edges
superimposed on the noisy images, and the bottom row shows the denoised approximations. The
number of iterations and computations increased with the amount of noise. In particular, for the
last example, we chose Ncoarse = 100 (instead of Ncoarse = 50) to speed up the calculations. As
the amount of noise increases, the background and the foreground become less and less dissimilar,
thereby making it more difficult to obtain a proper segmentation. Moreover, as the variation in
the image increases with noise, the data-driven adaptivity algorithm refines the mesh to improve
the image representation, which in turn increases the computational cost. Other experiments also
revealed the effect of the smoothing parameter μ on the performance: using smaller μ increased the
number of iterations considerably for the noisier images.

k = 1, J = 0.0634 k = 6, J = 0.0488 k = 11, J = 0.0366

k = 21, J = 0.0319 k = 36, J = 0.0303 k = 53, J = 0.0291

Fig. 6.7. Segmentation of images without sharp edges. Segmentation of the galaxy
image of size 2212 × 1262, using the Mumford–Shah model (1.2) with model parameters μ = 0.25,
γ = 5×10−4. We show the curves given by the H1 flow and the energy values J at several iterations
k. Although there are no sharp edges defined in this image, our algorithm gives a very satisfactory
segmentation in 53 iterations and 20s.
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μ = 2.0, μ = 0.25, μ = 0.01,

k = 66, t = 25s k = 53, t = 20s k = 120, t = 1m 51s

Fig. 6.8. Sensitivity to μ. Segmentation results for different values of parameter μ in the
Mumford–Shah energy (1.2) and γ = 5 × 10−4. The approximation u for the most satisfactory
segmentation (visually) is depicted in the middle. When increasing μ up to 2.0 the regularized
foreground and background given by u1 and u2, respectively, become constant. On the other hand,
the approximation u gets somewhat less smooth as we decrease μ to 0.01.

γ = 2 × 10−3, γ = 5 × 10−4, γ = 1 × 10−4,

k = 193, t = 1m 55s k = 53, t = 20s k = 60, t = 37s

Fig. 6.9. Sensitivity to γ. Segmentation results for different values of parameter γ in the
Mumford–Shah energy (1.2) and μ = 0.25. This experiment clearly shows how the penalization
of length in the Mumford–Shah model (1.2) constrains the curves. For the highest value of the
parameter, γ = 2 × 10−3, we obtained shorter and smoother curves. For the lowest value, γ =
1 × 10−4, we obtained longer and much rougher curves.

(a) J = 0.0364 (b) J = 0.0379 (c) J = 0.0371 (d) J = 0.0369

k = 74, t = 28s k = 66, t = 35s k = 62, t = 31s k = 137, t = 56s

Fig. 6.10. Sensitivity to initial curves. Segmentation with the H1 flow for the Mumford–
Shah model (1.2) with parameters μ = 0.02, γ = 1 × 10−3, starting from different initial curves
Γ0: (a) Γ0 outside the object, (b) Γ0 inside the object, (c) Γ0 partially overlapping with the object,
(d) Γ0 small inside the object. The number of iterations k, the corresponding final energies J, and
CPU times are presented. The first three examples show qualitatively similar segmentations, despite
starting from quite different initial curves. However, the last example reveals the nonconvex nature
of the energy (1.2): the small initial curve (rounded rectangle), which is inside the dandelion, results
in two final curves separating the dandelion into a darker center and a lighter periphery. This final
configuration is a local minimum for this problem, which is to be expected for an algorithm based on
local information such as shape derivatives.
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