
Customizable Web Services Matching and
Ranking Tool: Implementation and Evaluation

Fatma Ezzahra Gmati1, Nadia Yacoubi Ayadi1, Afef Bahri2, Salem Chakhar3,
and Alessio Ishizaka3

1 RIADI Research Laboratory, National School of Computer Sciences, University of
Manouba, Manouba, Tunisia

fatma.ezzahra.gmati@gmail.com, nadia.yacoubi.ayadi@gmail.com
2 MIRACL Laboratory, High School of Computing and Multimedia, University of

Sfax, Sfax, Tunisia
afef.bahri@gmail.com

3 Portsmouth Business School and Centre for Operational Research & Logistics,
University of Portsmouth, Portsmouth, UK

salem.chakhar@port.ac.uk, alessio.ishizaka@port.ac.uk

Abstract. The matchmaking is a crucial operation in Web service dis-
covery and selection. The objective of the matchmaking is to discover
and select the most appropriate Web service among the different avail-
able candidates. Different matchmaking frameworks are now available in
the literature but most of them present at least one of the following short-
comings: (1) use of strict syntactic matching; (2) use of capability-based
matching; (3) lack of customization support; and (4) lack of accurate
ranking of matching Web service. The objective of this paper is thus to
present the design, implementation and evaluation of the Parameterized
Matching-Ranking Framework (PMRF) that fully overcomes the first,
third and fourth shortcomings cited above and partially addresses the
second one. The comparison of PMRF to iSeM-logic-based and SPAR-
QLent, using the OWLS-TC4 datasets, shows that the algorithms sup-
ported by PMRF outperform those proposed in iSeM-logic-based and
SPARQLent.

Keywords: Web service, Semantic similarity, Matchmaking, Ranking,
Implementation, Performance Evaluation.

1 Introduction

Web services matchmaking is the operation of discovering and selecting the most
appropriate (i.e., that responds better to the user request) Web service among
the different available candidates. Different matchmaking frameworks are now
available in the literature, including [2][24][26][32][39][40][42]. However, most of
these frameworks present at least one of the following shortcomings: (1) use of
strict syntactic matching, which generally leads to low recall and precision rates;
(2) use of capability-based matchmaking, which is proven [1][10] to be inadequate
in practice; (3) lack of customization support; and (4) lack of accurate ranking

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/44342549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 F.E. Gmati et al.

of matching Web services, especially within semantic-based matching. These
shortcomings are discussed in more detail in the next section.

The objective of this paper is to present the Parameterized Matching-Ranking
Framework (PMRF), which uses semantic matchmaking, accepts capability and
property attributes, supports different levels of customization and generates a
ranked list of matching Web services. The PMRF fully overcomes the first, third
and fourth shortcomings enumerated earlier and partially addresses the second
one. The comparison of PMRF to iSeM-logic-based [20] and SPARQLent [37],
using the OWLS-TC4 datasets, shows that the algorithms supported by PMRF
behave globally well in comparison to iSeM-logic-based and SPARQLent.

The design and development of PMRF have been influenced by several exist-
ing frameworks, especially [3][6][7][10][20][33]. Although that these proposals are
based on semantics, they fail to take into account jointly the previous shortcom-
ings. Indeed, the proposal of [3][20][37] do not support any customization while
those of [6][7][10] do not propose solutions for ranking Web services. Some pro-
posals including [5][16] propose to use semantics to enhance the matchmaking
process but most of them still consider capability attributes only. The proposal
of [6][7] lack effective implementation. In addition, the authors do not precise
how the similarity degree is computed and how the different matching Web ser-
vices are ranked before provided to the user. Finally, there is a lack of effective
evaluation and performance analysis of matching algorithms.

The paper is organized as follows. Section 2 discusses some related work.
Section 3 presents the architecture of the PMRF. Section 4 deals with system
implementation. Section 5 studies the performance of the PMRF. Section 6 pro-
vides the comparative study. Section 7 concludes the paper.

2 Related Work

In this section, we first discuss each of above-cited shortcomings of existing
matchmaking frameworks, namely use of strict syntactic matching, use of capability-
based matching, lack of customization support and lack of accurate ranking.
Then, we briefly review some similarity measure computing approaches.

2.1 Matching Type

The first and traditional matchmaking frameworks, such as Jini [2], Konark
[24] and Salutation [32], are based on strict syntactic matching. Such syntactic
matching approaches only perform service discovery and service matching based
on particular interface or keyword queries from the user, which generally leads
to low recall and low precision of the retrieved services [27].

In order to overcome the limitation of strict syntactic matching, some ad-
vanced techniques and algorithms have been used such as genetic algorithmic
[26] and utility function [40][42]). Alternatively, many authors propose to in-
clude the concept of semantics as in [3][5][11][14][16][20][25][33][37][38] to deal
with the limitation of strict syntactic matching. The use of ontology eliminates

Customizable Web Services Matching and Ranking Tool 3

the issues caused by syntactic difference between terms since matching is now
possible on the basis of concepts of ontologies used to describe input and output
terms [4].

2.2 Matching Attributes

Most of existing matchmaking frameworks such as [5][14][16][25][33][38] utilize
a strict capability-based matchmaking, which is proven [1][10] to be inadequate
in practice. Some recent proposals, including [5][16], propose to use semantics
to enhance the matchmaking process but most of them still consider capability
attributes only.

The author in [6] distinguishes three types of service attributes: (i) capability
attributes that directly relate to working of the service, (ii) quality attributes
related to the service quality, and (iii) property attributes including all the other
ones. The authors in [7] extend the works of [6] and [10] propose different match-
making algorithms devoted to different types of attributes (capability, property
and service quality).

2.3 Customisation Support

An important shortcoming of most of existing Web service matchmaking frame-
works is the lack of customization support. To deal with this shortcoming, some
authors allow the user to specify some parameters. For instance, the authors in
[10] present a parameterized semantic matchmaking framework that exhibits a
customizable matchmaking behavior. One important shortcoming of [10] is that
the sufficiency condition defined by the authors is very strict since it requires
that all the specified conditions hold at the same time. This seems to be very
restrictive in practice, especially for attributes related to the service quality.

Recently, the authors in [7] extend the work of [6] and propose a series of
algorithms for different types of matching. These algorithms are designed to
support a customizable matching process that permits the user to control the
matched attributes, the order in which attributes are compared, as well as the
way the sufficiency is computed for all matching types.

2.4 Ranking Support

Although the semantic matchmaking permits to avoid the problem of simple
syntactic and strict capability-based matchmaking, it is not very suitable for ef-
ficient Web service selection. This is because it is difficult to distinguish between
a pool of similar Web services [35]. Indeed, since we have a limited number of
similarity degrees, semantic matchmaking frameworks will most often face the
problem of ties when several Web services have the same similarity degree.

A possible solution to this issue is to use some appropriate techniques and
some additional information to rank the Web services delivered by the semantic
matching algorithm and then provide a manageable set of ‘best’ Web services to

4 F.E. Gmati et al.

the user from which s/he can select one Web service to deploy. Several approaches
have been proposed to implement this idea [22][29][28].

Table 1 summarizes the main characteristics of the above cited frameworks.
As shown in this table, the discussed frameworks fail to jointly take into ac-
count all the previously enumerated shortcomings. The proposed system PMRF
uses semantic matchmaking, accepts capability and property attributes, support
different levels of customization and generates a ranked list of matching Web ser-
vices. It can be easily extended, based on our previous work [7][8], to support
attributes related to the quality of service.

Table 1. Comparison of Matchmaking Frameworks

Matchmaker Matching Matching Customization Ranking Description
Type Attributes Support Support Language

[1] Logical Service quality No Yes OWL
Jini[2] Syntactic Capability No No No
Konark[24] Syntactic Capability No No XML
Salutation[32] Logical Capability No Yes OWL-S
MatchMaker [38] Syntactic Capability No No DAMS, UDDI
RACER[25] Syntactic Capability No No DAML-S
PSMF[10] Logical Capability Yes No DAML-S, WSDL,

UDDI
SPARQLent[37] Logical Capability No Yes OWL-S
iSeM-logi-based[20] Logical Capability No Yes OWL-S, SAWSDL
QoSeBroker[7][8] Logical Capability, Property, Yes No OWL-S

Service quality
PMRF Logical Capability, Property Yes Yes OWL-S

2.5 Similarity Measure Computing Approaches

To overcame the shortcomings of traditional matchmaking frameworks, several
authors propose to include the semantics in the matchmaking process [34]. The
first semantic matchmaker have been proposed by [33]. The idea of [33] is first
to compute similarity between the concepts of the compared services and tag it
as Exact, Plugin, Subsumes or Fail if there is no similarity. Then, they aggregate
the results into an overall degree of matching using a greedy approach. The first
drawback of [33]’s algorithm is the way the degree of match is computed. Indeed,
calculating a subsumes relation over a large ontology can be time consuming due
to the inference process. The second drawback, as noticed by [3], concerns the
problem of false positives and false negatives in the final results, which will lead
to low precision and recall rates.

The authors in [10] extend and specify the similarity measure definition pro-
posed in [33] and identify six similarity measures (namely Exact, Plugin, Sub-
sumption, Container, Part-of and Disjoint) that can be used to measure the
mapping between two conceptual annotations. However, the authors in [10] do
not specify the modeling approach.

The authors in [3] propose an algorithm that relies on a bipartite graph
where the vertices in the left side of the bipartite graph correspond to advertised

Customizable Web Services Matching and Ranking Tool 5

services while those in the right side correspond to the requested services and
edges correspond to the semantic relationships between concepts in left and right
sides of the graph. Then, they assign a weight to each edge and finally apply the
Hungarian algorithm [23] to identify the complete matching that minimizes the
maximum weight in the graph.

Table 2 compares different similarity measure computing approaches with
respect to modelling techniques, level of precision and complexity.

Table 2. Comparison of Similarity Measure Computing Approaches

Approach Modelling Technique Precision Complexity

[10] Unspecified High Moderate
[33] Greedy Algorithm Low High
[3] Bipartite Graph High Moderate

Efficient Algorithm Bipartite Graph Moderate Low
Accurate Algorithm Bipartite Graph High Moderate

3 System Architecture

In this section, we first introduce the conceptual and functional architecture
of the PMRF. Then, we present the different supported matching, similarity
measuring and ranking algorithms.

3.1 Conceptual Architecture

Figure 1 provides the conceptual architecture of the PMRF. The inputs of the
system are the specifications of the requested Web service and the different
parameters. The output is a ranked list of matching Web services. The PMRF
is composed of two layers. The role of the first layer is to parse the input data
and parameters and then transfer it to the second layer, which represents the
matching and ranking engine. The Matching Module filters Web service offers
that match with the user specifications. The result is then passed to the Ranking
Module that produces a ranked list of Web services. The assembler guarantees
a coherent interaction between the different modules in the second layer.

The three main components of the second layer are:

– Matching Module: This component contains the different matching al-
gorithms: basic, partially parameterized and fully parameterized matching
algorithms (see Section 3.3).

– Similarity Computing Module: This component supports the different
similarity measure computing approaches: Efficient similarity with MinEdge,
Accurate similarity with MinEdge, Accurate similarity with MaxEdge and
Accurate similarity with MaxMinEdge (see Section 3.4).

– Ranking Module: This component is the repository of the score computing
technique and the different ranking algorithms, namely score-based, rule-
based and tree-based ranking algorithms (see Section 3.5).

6 F.E. Gmati et al.

I n s t a n c e s

Matching Module

Basic Matching E!cient MinEdge

Accurate MinEdge

Accurate MaxMinEdge

Accurate MaxEdge

Score Computing Technique

Score-Based Ranking

Tree-Based Ranking

Rule-Based Ranking

Partially Parametrized Matching

Fully Parametrized Matching

Similarity Computing Module

Ranking Module

A s s e m b l e r

 Matching Module

instances

Similarity computing

module Instances

 Ranking Module

Instances

Criteria Parser

Service Pro"le Parser

User

Con"guration

Parser

Service

Registry

criteria

Table/List

User

Con"gu-

ration

Ranked

List of

Services

Layer 1

Layer2

Fig. 1. Conceptual architecture of PMRF

3.2 Functional Architecture

The functional architecture of the PMRF is given in Figure 2. It shows graph-
ically the different steps from receiving the user query (specifications of the
requested Web service and the different parameters) until the delivery of the
final results (ranked list of matching Web services) to the user.

We can distinguish the following main operations:

– The PMRF receives (1) the user query including the specifications of the
desired Web service and the required parameters;

– The Matching Module scans (2) the Registry in order to identify the Web
services matching the user query;

– During the matching process, the Matching Module uses (3) the Similarity
Computing Module to calculate the similarity degrees;

– The Matching Module delivers (4) the Web services matching the user query
to the Ranking Module;

– The Ranking Module receives (5) the matching Web services and processes
them for ranking;

– During the ranking operation, the Ranking Module uses (6) the Scoring
Technique to compute the scores of the Web services;

– The Ranking Module generates a ranked list of Web services, which is then
delivered (7) by the PMRF to the user.

Customizable Web Services Matching and Ranking Tool 7

Fig. 2. Functional architecture of PMRF

3.3 Matching Algorithms

The PMRF supports three matching algorithms—basic, partially parameterized
and fully parameterized—supporting different levels of customization (see Table
3). The basic matching algorithm supports no customization. The partially pa-
rameterized matching algorithm allows the user to specify the set of attributes
to be used in the matching. Within the fully parameterized matching algorithm,
three customizations are taken into account. A first customization consists in al-
lowing the user to specify the list of attributes to consider. A second customiza-
tion consists in allowing the user to specify the order in which the attributes
are considered. A third customization is to allow the user to specify a desired
similarity measure for each attribute. In the rest of this section, we present the
third algorithm.

Table 3. Customization Levels for Matching Algorithms

Matching List of Order of Desired
Algorithm Attributes Attributes Similarity

Basic
Partially parameterized X
Fully parameterized X X X

In order to support all the above-cited customizations of the fully parame-
terized matching, we used the concept of Criteria Table, introduced by [10], that
serves as a parameter to the matching process. A Criteria Table, C, is a rela-
tion consisting of two attributes, C.A and C.M . The C.A describes the service
attribute to be compared, and C.M gives the least preferred similarity measure
for that attribute. Let C.Ai and C.Mi denote the service attribute value and the
desired measure in the ith tuple of the relation. The C.N denotes the number
of tuples in C.

Let SR be the service that is requested, SA be the service that is advertised
and C a criteria table. A sufficient match exists between SR and SA if for every

8 F.E. Gmati et al.

attribute in C.A there exists an identical attribute of SR and SA and the values of
the attributes satisfy the desired similarity measure specified in C.M . Formally,

∀i∃j,k(C.Ai = SR.Aj = SA.Ak) ∧ µ(SR.Aj , S
A.Ak) ≽ C.Mi

⇒ SuffMatch(SR, SA) 1 ≤ i ≤ C.N .
(1)

The computing of the similarity degrees µ(·, ·) is addressed in Section 3.4. The
fully parameterized matching process is formalized in Algorithm 1, which follows
directly from Sentence (1).

Algorithm 1: Fully Parameterized Matching

Input : SR, // Requested service.

SA, // Advertised service.
C, // Criteria Table.

Output: Boolean, // fail/success.
1 while (i ≤ C.N) do

2 while
(
j ≤ SR.N

)
do

3 if
(
SR.Aj = C.Ai

)
then

4 Append SR.Aj to rAttrSet;

5 j ←− j + 1;

6 while
(
k ≤ SA.N

)
do

7 if
(
SA.Ak = C.Ai

)
then

8 Append SA.Ak to aAttrSet;

9 k ←− k + 1;

10 i←− i + 1;

11 while (t ≤ C.N) do
12 if (µ(rAttrSet[t], aAttrSet[t]) ≺ C.Mt) then
13 return fail;

14 t←− t + 1;

15 return success;

Algorithm 1 proceeds as follows. First, it loops over the attributes in the
Criteria Table C and for each attribute it identifies the corresponding attribute
in the requested service SR and the potentially advisable service under consid-
eration SA. The corresponding attributes are appended into two different lists
rAttrSet (requested Web service) and aAttrSet (advisable Web service). This op-
eration is implemented by sentences 1 to 10 in Algorithm 1. Second, it loops
over the Criteria Table and for each attribute it computes the similarity degree
between the corresponding attributes in rAttrSet and aAttrSet. This operation
is implemented by sentences 11 to 14 in Algorithm 1. The output of Algorithm
1 is either success (if for every attribute in C there is a similar attribute in the
advertised service SA with a sufficient similarity degree) or fail (otherwise).

The Criteria Table C used as parameter to Algorithm 1 permits the user
to control the matched attributes, the order in which attributes are compared,
as well as the minimal desired similarity for each attribute. The structure of
partially matching algorithm is similar to Algorithm 1 but it takes as input an

Customizable Web Services Matching and Ranking Tool 9

unordered collection of attributes with no desired similarities. The basic match-
ing algorithm do no support any customization and the only possible inputs
are the specification of the requested SR and advertised SA services. Different
versions and extensions of this algorithm are available in [6][7][8][13].

3.4 Computing Similarity Degrees

To compute the similarity degree, we extended the solution of [3] where the au-
thors define four degrees of match, namely Exact, Plugin, Subsumes and Fail as
default. During the matching process, the inputs and outputs of the requested
Web service are matched with the inputs and outputs of the advertised Web
service by constructing a bipartite graph where: (i) the vertices in the left side
correspond to advertised services; (ii) the vertices in the right side correspond
to the requested service; and (iii) the edges correspond to the semantic relation-
ships between the concepts in left and right sides of the graph. Then, they assign
weights to each edge as follows: Exact: w1, Plugin: w2, Subsumes: w3, Fail: w4;
with w4 ≻ w3 ≻ w2 ≻ w1. Finally, they apply the Hungarian algorithm [17]
to identify the complete matching that minimizes the maximum weight in the
graph. The final returned similarity degree is the one corresponding to the max-
imum weight in the graph. Then, the selected assignment is the one representing
a strict injective mapping such that the maximal weight is minimized.

The algorithms used in PMRF to compute the similarity degrees between
services extend the works of [3] with respect to two aspects: (i) the way the degree
of match between two concepts is computed, and (ii) the optimality criterion
used to compute the overall similarity degree. Concerning the computation of
the degree of match, two versions are included in PMRF: efficient and accurate.
In the efficient version, the degree of match is computed as in Algorithm 2 where:
(i) ≡: equivalence relationship; (ii) @1: direct child/parent relationship; (iii) and
A1: direct parent/child relationship.

Algorithm 2: Degree of Match (Efficient Version)

Input : CAR, // first concept.
CAA, // second concept.

Output: degree of match
1 if (CAR ≡ CAA) then
2 return Exact;

3 else
4 if (CAR @1 CAA) then
5 return Plugin ;

6 else
7 if (CASR A1 CAA) then
8 return Subsumes;

9 else
10 return Fail ;

10 F.E. Gmati et al.

In this first version, only direct related concepts are considered for Plugin
and Subsume similarity measures. This will affect the precision of the algorithm
since it uses a small set of possible concepts but necessarily improves the query
response time (since there is no need to use inference).

In the accurate version, we defined six similarity degrees: Exact, Plugin,
Subsume, Extended-Plugin, Extended-Subsume and Fail. The degree of match
in this version is calculated according to Algorithm 3 where: (i) ≡: equivalence
relationship; (ii) @1: direct child/parent relationship; (iii) A1: direct parent/child
relationship; (iv) @: indirect child/parent relationship; and (v) A: indirect par-
ent/child relationship. In Algorithm 3, indirect concepts are considered through
Extended-Plugin and Extended-Subsume similarity measures.

Algorithm 3: Degree of Match (Accurate Version)

Input : CAR, // first concept.
CAA, // second concept.

Output: degree of match//
1 if (CAR ≡ CAA) then
2 return Exact;

3 else
4 if (CAR @1 CAA) then
5 return Plugin;

6 else
7 if (CAR A1 CAA) then
8 return Subsume;

9 else
10 if (CAR @ CAA) then
11 return Extended-Plugin;

12 else
13 if (CAR A CAA) then
14 return Extended-Subsume;

15 else
16 return Fail;

The second extension [3]’s work concerns the the optimality criterion used to
compute the overall similarity value. The optimality criterion used in [3] is de-
signed to minimize the false positives and the false negatives. In fact, minimizing
the maximal weight would minimize the edges labeled Fail. However, the choice
of max(wi) as a final return value is restrictive and the risk of false negatives
in the final result is higher. To avoid this problem, we propose to consider both
max(wi) and min(wi) as pertinent values in the matching. A further discussion
of similarity degree computing is available in [12].

3.5 Ranking Algorithms

The PMRF supports three ranking algorithms: score-based, rule-based and tree-
based. The first algorithm relies on the scores only. The second algorithm defines

Customizable Web Services Matching and Ranking Tool 11

and uses a series of rules to rankWeb services. It permits to solve the ties problem
encountered by the score-based ranking algorithm. The tree-based algorithm,
which is based on the use of a tree data structure, permits to solve the problem
of ties of the first algorithm. In addition, it is computationally better than the
rule-based ranking algorithm. The score-based ranking is given in Algorithm 4.
The rule-based and tree-based ranking algorithms are available in [13] and [12],
respectively.

Algorithm 4: Score-Based Ranking
Input : mServices,// List of matching Web services.

N ,// Number of attributes.
Output: mServices,// Ranked list of Web services.

1 mServices← ComputeNormScores(mServices,N);
2 r ← length(mServices);
3 for (i = 1 to r − 1) do
4 j ← i;
5 while (j ≥ 0 ∧ mServices[j − 1, N + 2] > mServices[j,N + 2]) do
6 swap mServices[j,N + 2] and mServices[j − 1, N + 2];
7 j ← j − 1;

8 return mServices;

The main input of the score-based ranking algorithm is a list mServices of
matching Web services. The function ComputeNormScores in Algorithm 4 per-
mits to calculate the normalized scores of Web services. It implements the idea
we proposed in [13]. The score-based ranking algorithm uses then an insertion
sort procedure (implemented by lines 3-7 in Algorithm 4) to rank the Web ser-
vices based on their normalized scores.

The list mServices used as input to Algorithm 4 has the following generic
definition:

(SA
i , µ(SA

i .A1, S
R.A1), · · · , µ(SA

i .AN , SR.AN)),

where: SA
i is an advertised service, SR is the requested service, N the total

number of attributes and for j ∈ {1, · · · , N}, µ(SA
i .Aj , S

R.Aj) is the similarity
measure between the requested Web service and the advertised Web service on
the jth attribute Aj .

The list mServices will be first updated by function ComputeNormScores and
it will have the following new generic definition:

(SA
i , µ(SA

i .A1, S
R.A1), · · · , µ(SA

i .AN , SR.AN), ρ′(SA
i)),

where: SA
i , S

R, N and µ(SA
i .Aj , S

R.Aj) (j = 1, · · · , N) are as above; and ρ′(SA
i)

is the normalized score of advertised Web service SA
i . The normalized score

ρ′(SA
i) is computed by ComputeNormScores.
Based on the discussion in Section 3.4, we designed two versions for com-

puting similarity degrees. Accordingly, two versions can be distinguished for the
definition of the listmServices at the input level, along with the way the similarity
degrees are computed. The first version is as follows:

12 F.E. Gmati et al.

(SA
i , µmax(S

A
i .A1, S

R.A1), · · · , µmax(S
A
i .AN , SR.AN)),

where: SA
i , S

R and N are as above; and µmax(S
A
i .Aj , S

R.Aj) (j = 1, · · · , N)
is the similarity measure between the requested Web service and the advertised
Web service on the jth attribute Aj computed by selecting the edge with the
maximum weight in the matching graph.

The second version of mServices is as follows:

(SA
i , µmin(S

A
i .A1, S

R.A1), · · · , µmin(S
A
i .AN , SR.AN)),

where SA
i , S

R and N are as above; and µmin(S
A
i .Aj , S

R.Aj) (j = 1, · · · , N)
is the similarity measure between the requested Web service and the advertised
Web service on the jth attribute Aj computed by selecting the edge with the
minimum weight in the matching graph.

To obtain the final rank, we need to use these two versions separately and
then combine the obtained rankings. However, a problem of ties may occur since
several Web services may have the same scores with both versions. The tree-
based ranking algorithm [12] permits to solve this problem.

4 System Implementation

In this section, we first present the different tools and the strategy used to
develop PMRF. Then, we present the customization support interface. Finally,
we comment on the user/provider acceptability issues.

4.1 Implementation Tools and Strategy

To develop the PMRF, we have used the following tools: (i) Eclipse IDE as the
developing platform, (ii) OWLS-API to parse the OWLS service descriptions,
and (iii) OWL-API and the Pellet-reasoner to perform the inference for comput-
ing the similarity degrees. In order to minimize resources consumption (especially
memory), we used the following procedure for implementing the inference oper-
ation: (1) A local Ontology is created at the start of the matchmaking process.
The incremental classifier class, taken from the Pellet reasoner library, is associ-
ated to this Ontology. (2) The service parser based on the OWLs-API retrieves
the Uniform Resource Identifier (URI) of the attributes values of each service.
The concepts related to these URIs are added incrementally to the local Ontol-
ogy and the classifier is updated accordingly. (3) In order to infer the semantic
relations between concepts, the similarity measure module uses the knowledge
base constructed by the incremental classifier.

4.2 Customization Support

The parametrization interface of the PMRF is given in Figure 3. The PMRF per-
mits the user to choose the type of algorithm to use and to specify the criteria

Customizable Web Services Matching and Ranking Tool 13

table to consider during the matching. The PMRF offers three matching algo-
rithms (basic, partially parameterized and fully parameterized) and three rank-
ing algorithms (score-based, rule-base and tree-based). In addition, the PMRF
supports different aggregation levels: conjunctive-attribute level, disjunctive-
attribute level and service level. The attribute-level matching involves capa-
bility and property attributes and consider each matching attribute indepen-
dently of the others. In this type of matching, the PMRF offers two types of
aggregation, namely conjunctive and disjunctive, where the individual (for each
attribute) similarity degrees are combined using either AND or OR logical op-
erators. The service-level matching considers capability and property attributes
but the matching operation implies attributes both independently and jointly.

Fig. 3. Parametrization interface

The PMRF also allows the user to select the procedure to use for computing
the similarity degrees. Four procedures are supported by the system: efficient
similarity with MinEdge, accurate similarity with MinEdge, accurate similarity
with MaxEdge and accurate similarity with MaxMinEdge.

4.3 User/Provider Acceptability Issues

One important characteristic of the proposed framework is its configurability by
allowing the user to specify a set of parameters and apply different algorithms

14 F.E. Gmati et al.

supporting different levels of customization. This, however, leads to the problem
of user/provider acceptability and ability to specify the required parameters,
especially the criteria Table. Indeed, the specification of these parameters may
require some cognitive effort from the user/provider.

A possible solution to reduce this effort is to use a predefined Criteria Table.
This solution can be further enhanced by including in the framework some ap-
propriate Artificial Intelligence techniques to learn from the previous choices of
the user.

Another possible solution to reduce the cognitive effort consists in exploiting
the context of the user queries. First, the description of elementary services can
be textually analysed and based on the query domain, the system uses either the
efficient or the accurate versions of the similarity measure computing algorithm.
Second, a global time limit to the matchmaking process can be used to orient
the system towards which version should used. Third, the context of the query
in the workflow can be used to determine the level of customization needed and
also in the generation of a suitable Criteria Table or Attributes List.

A more advanced solution consists in combining all the idea cited above.

5 Performance Evaluation

In this section, we evaluate the performance of the different algorithms supported
by the PMRF.

5.1 Evaluation Framework

To evaluate the performance of the PMRF, we used the Semantic Matchmaker
Evaluation Environment (SME2) [19], which is an open source tool for testing
different semantic matchmakers in a consistent way. The SME2 uses OWLS-TC
collections to provide the matchmakers with Web service descriptions, and to
compare their answers to the relevance sets of the various queries. The SME2
provides several metrics to evaluate the performance and effectiveness of a Web
service matchmaker. The metrics that have been considered in this paper are:
precision and recall, average precision, query response time and memory con-
sumption. The definitions of these metrics are given in [19].

Experimentations have been conducted on a Dell Inspiron 15 3735 Laptop
with an Intel Core i5 processor (1.6 GHz) and 2 GB of memory. The test collec-
tion OWLS-TC4 that has been used consists of 1083 Web service offers described
in OWL-S 1.1 and 42 queries. Figure 4 provides an Ontology example (concern-
ing health insurance) that has been used for the experimentations.

5.2 Performance Evaluation Analysis

To study the performance of the different modules supported by the PMRF, we
implemented seven plugins (see Table 4) to be used with the SME2 tool. Each

Customizable Web Services Matching and Ranking Tool 15

Fig. 4. Ontology example about Health Insurance

Table 4. Configurations Used for Comparison

Configuration Similarity Matching Ranking
Number Measure Algorithm Algorithm

1 Accurate MinEdge Basic Basic
2 Efficient MinEdge Basic Basic
3 Accurate MaxEdge Basic Basic
4 Accurate MinEdge Fully Parameterized Basic
5 Accurate MaxMinEdge Basic RankMinMax
6 Accurate MinEdge Basic Rule Based
7 Efficient MinEdge Basic Rule Based

of these plugins represents a different combination of the matching, similarity
computing and ranking algorithms.

The difference between configurations 1 and 2 is the similarity measure mod-
ule instance: configuration 1 employs the Accurate MinEdge instance while
the second employs the Efficient MinEdge instance. Figure 5(a) shows the
Average Precision and Figure 5(b) illustrates the Recall/Precision plot of con-
figurations 1 and 2. We can see that configuration 1 outperforms configuration
2 for these two metrics. This is due to the use of logical inference, that obvi-
ously enhances the precision of the first configuration. In Figure 5(c), however,
configuration 2 is shown to be remarkably faster than configuration 1. This is

16 F.E. Gmati et al.

due to the inference process used in configuration 1 that consumes considerable
resources.

(a) (b)

(c)

Fig. 5. Config. 1 vs Config. 2: (a) Average Precision, (b) Recall/Precision and (c) Query
Response Time

The configurations 1 and 4 use different matching module instances. The
first configuration is based on the basic matching algorithm while the second
uses the fully parameterized matching. Figure 6(a) shows the Average Precision
metric results. It is easy to see that configuration 4 outperforms configuration
1. This is due to the fact that the Criteria Table restricts the results to the
most relevant Web services, which will have the best ranking leading to a higher
Average Precision. Figure 6(b) illustrates the Recall/Precision plot. It shows
that configuration 4 has a low recall rate. The overly restrictive Criteria Table
explains these results, since it fails to return some relevant services.

The difference between configurations 5 and 6 is the ranking module instance
and the similarity measure computing procedure. The first uses the tree-based
ranking algorithm while the second employs the rule-based ranking algorithm.
Figure 7(a) shows that configuration 5 has a slightly better Average Precision

Customizable Web Services Matching and Ranking Tool 17

than configuration 6 while Figure 7(b) shows that configuration 6 is obviously
faster than configuration 5.

(a) (b)

Fig. 6. Config. 1 vs Config. 4: (a) Average Precision and (b) Recall/Precision

(a) (b)

Fig. 7. Config. 5 vs Config. 6: (a) Average Precision and (b) Query Response Time

6 Comparative Study

We compared the results of the PMRF matchmaker with SPARQLent [37] and
iSeM [20] frameworks. Configuration 7 Table 4 was chosen to perform this com-
parison. The SPARQLent is a logic-based matchmaker based on the OWL-DL
reasoner Pellet to provide exact and relaxed Web services matchmaking. The
iSeM is an hybrid matchmaker offering different filter matchings: logic-based,
approximate reasoning based on logical concept abduction for matching Inputs

18 F.E. Gmati et al.

and Outputs. We considered only the I-O logic-based in this comparative study.
We note that SPARQLent and iSeM consider preconditions and effects of Web
services, which are not considered in our work.

The Average Precision is given in Figure 8(a). This figure shows that the
PMRF has a more accurate Average Precision than iSeM logic-based and SPAR-
QLent, leading to a better ranking precision than the two other frameworks.
In addition, the generated ranking is more fine-grained than SPARQLent and
iSeM. This is due to the score-based ranking that gives a more coarse evaluation
than a degree aggregation. Indeed, SPARQLent and iSeM approaches adopt
a subsumption-based ranking strategy as described in [33], which gives equal
weights to all similarity degrees.

Figure 8(b) presents the Recall/Precision of the PMRF, iSeM logic-based
and SPARQLent. This figure shows that PMRF recall is significantly better
than both iSeM logic-based and SPARQLent. This means that our approach is
able to reduce the amount of false positives (see [3] for a discussion on the false
positives problem).

(a) (b)

(c) (d)

Fig. 8. Comparative study: (a) Average Precision, (b) Recall/Precision, (c) Query Re-
sponse Time and (d) Memory Usage

Customizable Web Services Matching and Ranking Tool 19

The comparison of the Query Response Time of the PMRF, logic-based iSeM
and SPARQLent is shown in Figure 8(c). The first column (Avg) gives the aver-
age response time for the three matchmakers. The experimental results show that
the PMRF is faster than SPARQLent (760ms for SPARQLent versus 128ms for
PMRF) and slightly less faster than logic-based iSeM (65ms for iSeM). We note
that SPARQLent has especially high query response time if the query include
preconditions/effects. The SPARQLent is also based on an OWL DL reasoner,
which is an expensive processing. PMRF and iSeM have close query response
time because both consider direct parent/child relations in a subsumption graph,
which reduces significantly the query processing. The PMRF highest query re-
sponse time limit is 248ms.

Figure 8(d) shows the Memory Usage for PMRF, iSeM logic-based and
SPARQLent. It is easy to see that PMRF consumes less memory than iSeM
logic-based and SPARQLent. This can be explained by the fact that the PMRF
does not require a reasoner (in the case of Configuration 7) neither a SPARQL
queries in order to compute similarities between concepts. We note, however,
that the memory usage of the PMRF increases monotonically in contrast to
SPARQLent.

7 Conclusion and Future Work

In this paper, we presented a highly customizable framework, called PMRF,
for matching and ranking Web services. The conceptual and algorithmic solu-
tions on which PMRF relies permit to fully overcome the first, third and fourth
shortcomings of existing matchmaking frameworks. The second shortcoming is
partially addressed in this paper. All the algorithms have been evaluated us-
ing the OWLS-TC4 datasets. The evaluation has been conducted employing the
SME2 tool [19]. The results show that the algorithms behave globally well in
comparison to iSeM-logic-based and SPARQLent.

There are several topics that need to be addressed in the future. The first
topic concerns the support of non-functional matching. In this respect, several
existing approaches consider attributes related to the Quality of Service (QoS)
in the matching process (e.g. [1][21][26][31][36][41]. In the future, we intend to
enhance the framework to support QoS attributes for matching and ranking of
Web services. The work of [7] could be a start point.

The second topic focuses on the use of multicriteria evaluation. Indeed, there
are few proposals that explicitly use multicriteria evaluation to support match-
ing and ranking of Web services (e.g. [9][18][30][31][43]). In the future, we in-
tend to use a well-known and more advanced multicriteria method, namely the
Dominance-based Rough Set Approach (DRSA) [15]. This method is particu-
larity suitable for including the QoS attributes in the matching and ranking
process. Furthermore, the DRSA can be seen as case-based reasoning method,
which minimizes the cognitive effort required from user.

The last topic relates to the support of the imprecision and uncertainty in
matching and ranking Web services. In this paper, we assumed that the data

20 F.E. Gmati et al.

and user parameters are crisply defined. In the future, we intend to enhance
the proposed framework by conceiving and developing algorithms and tools that
support the imprecision and uncertainty aspects in Web services matching and
ranking.

References

1. A. Alnahdi, S. H. Liu, and A. Melton. Enhanced web service matchmaking: A
quality of service approach. In 2015 IEEE World Congress on Services, pages
341–348, New York, USA, June 27 - July 2 2015.

2. K. Arnold, B. O’Sullivan, R.W. Scheifler, J. Waldo, and A. Woolrath. The Jini
Specification. Addison-Wesley, Reading, MA, 1999.

3. U. Bellur and R. Kulkarni. Improved matchmaking algorithm for semantic Web
services based on bipartite graph matching. In IEEE International Conference on
Web Services, pages 86–93, Salt Lake City, Utah, USA, 9-13 July 2007.

4. U. Bellur, H. Vadodaria, and A. Gupta. Semantic matchmaking algorithms. In
W. Bednorz, editor, Advances in Greedy Algorithms, pages 481–502. SInTech, Vi-
enna, Austria, 2008.

5. S. Ben Mokhtar, A. Kaul, N. Georgantas, and V. Issarny. Efficient semantic service
discovery in pervasive computing environments. In ACM/IFIP/USENIX 2006
International Conference on Middleware, pages 240–259, Melbourne, Australia, 27
November - 1 December 2006.

6. S. Chakhar. Parameterized attribute and service levels semantic matchmaking
framework for service composition. In Fifth International Conference on Advances
in Databases, Knowledge, and Data Applications (DBKDA 2013), pages 159–165,
Seville, Spain, 27 January - 1 February 2013.

7. S. Chakhar, A. Ishizaka, and A.W. Labib. QoS-Aware parameterized semantic
matchmaking framework for web service composition. In V. Monfort and K.-H.
Krempels, editors, The 10th international conference on web information systems
and technologies (WEBIST 2014), volume 1, Barcelona, Spain, April 3-5, 2014:,
volume 1, pages 50–61. SciTePress, 2014.

8. S. Chakhar, A. Ishizaka, and A.W. Labib. Semantic matching-based selection and
QoS-Aware classification of web services. In V. Monfort and K.-H. Krempels, edi-
tors, Proceedings of the 10th international conference, WEBIST 2014, Barcelona,
Spain, 3-5 April, 2014, Revised Selected Papers:, Lecture Notes in Business Infor-
mation Processing, pages 96–112. Springer, Switzerland, 2015.

9. L. Cui, S. Kumara, and D. Lee. Scenario analysis of Web service composition based
on multi-criteria mathematical goal programming. Service Science, 3(4):280–303,
2011.

10. P. Doshi, R. Goodwin, R. Akkiraju, and S. Roeder. Parameterized semantic match-
making for workflow composition. IBM Research Report RC23133, IBM Research
Division, March 2004.

11. P. Fu, S. Liu, H. Yang, and L. Gu. Matching algorithm of Web services based
on semantic distance. In International Workshop on Information Security and
Application (IWISA 2009), pages 465–468, Qingdao, China, 21-22 November 2009.

12. F.-E. Gmati, N. Yacoubi Ayadi, A. Bahri, S. Chakhar, and A. Ishizaka. A
tree-based algorithm for ranking web services. In V. Monfort and K.-H. Krem-
pels, editors, The 11th International Conference on Web Information Systems
and Technologies (WEBIST 2015), Lisbon, Portugal, May 20-22:, pages 170–178.
SciTePress, 2015.

Customizable Web Services Matching and Ranking Tool 21

13. F.-E. Gmati, N. Yacoubi Ayadi, and S. Chakhar. Parameterized algorithms for
matching and ranking web services. In R. Meersman, H. Panetto, T. Dillon,
M. Missikoff, L. Liu, O. Pastor, A. Cuzzocrea, and T. Sellis, editors, On the move
to meaningful internet systems, OTM 2014 conferences:confederated international
conferences: CoopIS, and ODBASE 2014, Amantea, Italy, October 27-31, Lecture
Notes in Computer Science, pages 784–791. Springer, Berlin Heidelberg, 2014.

14. M. Goncalves, M.-E. Vidal, A. Regalado, and N. Yacoubi Ayadi. Efficiently se-
lecting the best web services. In The Second International Workshop on Resource
Discovery RED 2009, Lyon, France, August 28, 2009. Revised Papers, volume 6162
of Lecture Notes in Computer Science, pages 120–139. Springer, 2010.

15. S. Greco, B. Matarazzo, and R. Slowiński. Rough sets theory for multicriteria
decision analysis. European Journal of Operational Research, 129(1):1–47, 2001.

16. R. Guo, J. Le, and X.L. Xiao. Capability matching of Web services based on
OWL-S. In Sixteenth International Workshop on Database and Expert Systems
Applications, pages 653–657, 22-26 August 2005.

17. C.-L Huang. A moderated fuzzy matchmaking for Web services. In The Fifth
International Conference on Computer and Information Technology (CIT 2005),
pages 1116–1122, 2005.

18. B. Jeong, H. Cho, B. Kulvatunyou, and A. Jones. A multi-criteria Web services
composition problem. In IEEE International Conference on Information Reuse
and Integration (IRI 2007), pages 379–384, 2007.

19. M. Klusch, M. Dudev, J. Misutka, P. Kapahnke, and M. Vasileski. SME2 Version
2.2. User Manual. The German Research Center for Artificial Intelligence (DFKI),
Germany, 2010.

20. M. Klusch and P. Kapahnke. The iSeM matchmaker: A flexible approach for
adaptive hybrid semantic service selection. Web Semantics: Science, Services and
Agents on the World Wide Web, 15:1–14, 2012.

21. R. Krithiga. QoS-Aware Web service selection using SOMA. Global Journal of
Computer Science and Technology, 12(10):46–51, 2012.

22. J. Kuck and M. Gnasa. Context-sensitive service discovery meets information
retrieval. In Fifth Annual IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom’07), pages 601–605, March 2007.

23. H.W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

24. C. Lee, A. Helal, N. Desai, V. Verma, and B. Arslan. Konark: A system and
protocols for device independent, peer-to-peer discovery and delivery of mobile
services. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, 33(6):682–696, 2003.

25. L. Li and I. Horrocks. A software framework for matchmaking based on semantic
web technology. In The 12th International Conference on World Wide Web, WWW
’03, pages 331–339, New York, NY, USA, 2003. ACM.

26. S.A. Ludwig. Memetic algorithm for Web service selection. In The 3rd Workshop
on Biologically Inspired Algorithms for Distributed Systems, BADS ’11, pages 1–8,
New York, NY, USA, 2011. ACM.

27. Q. Lv, J. Zhou, and Q. Cao. Service matching mechanisms in pervasive computing
environments. In International Workshop on Intelligent Systems and Applications
(ISA 2009), pages 1–4, May 2009.

28. Z. Maamar, S.K. Mostefaoui, and Q.H. Mahmoud. Context for personalized Web
services. In The 38th Annual Hawaii International Conference on System Sciences
(HICSS’05), pages 166b–166b, Jan 2005.

22 F.E. Gmati et al.

29. U.S. Manikrao and T.V. Prabhakar. Dynamic selection of Web services with rec-
ommendation system. In The International Conference on Next Generation Web
Services Practices (NWeSP 2005), pages 117–121, August 2005.

30. D.A. Menascé. Composing Web services: A QoS view. IEEE Internet Computing,
8(6):88–90, 2004.

31. D.A. Menascé and V. Dubey. Utility-based QoS brokering in service oriented
architectures. In IEEE International Conference on Web Services (ICWS 2007),
pages 422–430, 2007.

32. B.A. Miller and R.A. Pascoe. Salutation service discovery in pervasive computing
environments,. White paper, IBM Pervasive Computing, February 2000.

33. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In The First International Semantic Web Conference on The
Semantic Web, ISWC ’02, pages 333–347, London, UK, 2002. Springer-Verlag.

34. P.R. Reddy, A. Damodaram, and A.V.K. Prasad. Capability matching of Web
services based on OWL-S. In S.C. Satapathy, P.S. Avadhani, and A. Abraham,
editors, Heterogeneous Matchmaking Approaches for Semantic Web Service Dis-
covery Using OWL-S. International Conference on Information Systems Design
and Intelligent Applications 2012 (INDIA 2012), volume 132 of Advances in Intel-
ligent and Soft Computing, pages 605–612, Visakhapatnam, India, 2005. Springer
Berlin Heidelberg.

35. W. Rong, K. Liu, and L. Liang. Personalized Web service ranking via user group
combining association rule. In The IEEE International Conference on Web Services
(ICWS 2009, pages 445–452, July 2009.

36. M. Sathya, M. Swarnamugi, P. Dhavachelvan, and G. Sureshkumar. Evaluation of
QoS based Web-service selection techniques for service composition. International
Journal of Software Engineering, 1(5):73–90, 2011.

37. M.L. Sbodio, D. Martin, and C. Moulin. Discovering semantic Web services using
SPARQL and intelligent agents. Web Semantics: Science, Services and Agents on
the World Wide Web, 8(4):310–328, 2010.

38. K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa. The retsina mas infras-
tructure. Autonomous Agents and Multi-Agent Systems, 7(1-2):29–48, 2003.

39. Y. Syu, S.-P. Ma, J.-Y. Kuo, and Y.-Y. FanJiang. A survey on automated service
composition methods and related techniques. In The IEEE Ninth International
Conference on Services Computing (SCC 2012), pages 290–297, Hawaii,USA, 24-
29 June 2012.

40. R. Wang, C.-H. Chi, and J. Deng. A fast heuristic algorithm for the composite Web
service selection. In The Joint International Conference on Advances in Data and
Web Management, APWeb/WAIM ’09, pages 506–518, Berlin, Heidelberg, 2009.
Springer-Verlag.

41. Y. Xia, P. Chen, L. Bao, M.Wang, and J. Yang. A QoS-AwareWeb service selection
algorithm based on clustering. In IEEE International Conference on Web Services
(ICWS), pages 428–435, 2011.

42. T. Yu and K.-J. Lin. Service selection algorithms for Web services with end-
to-end QoS constraints. In The IEEE International Conference on e-Commerce
Technology (CEC 2004), pages 129–136, July 2004.

43. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng. Quality driven
Web services composition. In The 12th International Conference on World Wide
Web, pages 411–421, New York, NY, USA, 2003. ACM.

