38 research outputs found

    Genetic diversity and population structure of Pepino mosaic virus in tomato crops of Spain and Morocco

    Get PDF
    Pepino mosaic virus (PepMV, genus Potexvirus) is an emergent and highly infectious pathogen responsible for economically important diseases in tomato crops. An extensive survey of tomato plants showing PepMV-like symptoms was carried out in 2017 to study the PepMV genetic diversity and populations structure in different tomato-producing areas of Spain and Morocco. Molecular dot-blot hybridization analysis showed that virus populations from Spain and Morocco were mainly composed of isolates belonging to the Chilean 2 (CH2) strain, although isolates of the European (EU) strain were detected in significant proportions in Spanish populations, mainly in mixed infections. A few isolates of the American (US1) strain were also detected in Tenerife (Canary Islands, Spain) crops. Eighty-five isolates were randomly selected and sequenced in the genomic region that encodes the triple gene block and capsid protein genes. Our phylogenetic and population genetics analyses confirmed the presence of the CH2, EU and US1 PepMV strains. Despite the high genetic similarity observed within populations, variants were maintained at low frequency under purifying selection, and differentiation among more geographically distant locations was identified, with potential gene flow contributing to the shaping of the PepMV populations structur

    Characterization of begomoviruses sampled during severe epidemics in tomato cultivars carrying the Ty-1 gene

    Get PDF
    Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) is a major species that causes a tomato disease for which resistant tomato hybrids (mainly carriers of the Ty-1/Ty-3 gene) are being used widely. We have characterized begomoviruses severely affecting resistant tomato crops in Southeast Spain. Circular DNA was prepared from samples by rolling circle amplification, and sequenced by massive sequencing (2015) or cloning and Sanger sequencing (2016). Thus, 23 complete sequences were determined, all belonging to the TYLCV Israel strain (TYLCV-IL). Massive sequencing also revealed the absence of other geminiviral and beta-satellite sequences. A phylogenetic analysis showed that the Spanish isolates belonged to two groups, one related to early TYLCV-IL isolates in the area (Group 1), and another (Group 2) closely related to El Jadida (Morocco) isolates, suggesting a recent introduction. The most parsimonious evolutionary scenario suggested that the TYLCV isolates of Group 2 are back recombinant isolates derived from TYLCV-IS76, a recombinant virus currently predominating in Moroccan epidemics. Thus, an infectious Group 2 clone (TYLCV-Mu15) was constructed and used in in planta competition assays against TYLCV-IS76. TYLCV-Mu15 predominated in single infections, whereas TYLCV-IS76 did so in mixed infections, providing credibility to a scenario of co-occurrence of both types of isolates

    Pepino mosaic virus RNA-Dependent RNA Polymerase POL Domain Is a Hypersensitive Response-Like Elicitor Shared by Necrotic and Mild Isolate

    Get PDF
    [SPA] El virus del mosaico del pepino dulce (PepMV) es un patógeno emergente que representa una grave amenaza para la producción de tomate. Las enfermedades inducidas por PepMV se manifiestan con una amplia gama de síntomas, incluyendo la necrosis sistémica. Nuestros resultados muestran que la acumulación de PepMV depende tanto del aislado del virus, como de la variedad de tomate o las condiciones ambientales, asociado todo ello al desarrollo de la necrosis. La sustitución de una lisina por un ácido glutámico en la posición 67 del triple bloque de genes (TGB3), previamente descrita como un determinante de la necrosis, parece favorecer una mayor acumulación del virus pero no parece ser el elemento elicitor de la necrosis sistémica. La sobreexpresión tanto de TGB3 como del dominio polimerasa (POL) de la replicasa (RdRp) produjo necrosis, aunque sólo la expresión local de POL desencadenó síntomas caracteristos de HR. En conjunto, nuestros datos sugieren que el dominio RdRp-POL desempeña un papel importante en la inducción de necrosis de PepMV, dependiendo del nivel de acumulación del virus, que puede ser modulado por la naturaleza de TGB3, el genotipo del huesped y las condiciones ambientales. [ENG] Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions.Agradecer la financiación del Ministerio de Economía y Competitividad (AGL2012-37390 ) y la fundación Séneca por la financiación de la Beca FPI

    Stable and Broad Spectrum Cross-Protection Against Pepino Mosaic Virus Attained by Mixed Infection

    Get PDF
    While recent pepino mosaic virus (PepMV; species Pepino mosaic virus, genus Potexvirus, family Alphaflexiviridae) epidemics seem to be predominantly caused by isolates of the CH2 strain, PepMV epidemics in intensive tomato crops in Spain are caused by both CH2 and EU isolates that co-circulate, representing a challenge in terms of control, including cross-protection. In this work, we hypothesized that mixed infections with two mild isolates of the EU and CH2 strains (PepMV-Sp13 and -PS5, respectively) may be useful in PepMV cross-protection in Spanish epidemics, providing protection against a broad range of aggressive isolates. Thus, we performed a range of field trials and an experimental evolution assay to determine the phenotypic and genetic stability of PepMV-Sp13 and -PS5 mixed infections, as well as their cross-protective efficiency. Our results showed that: (i) the phenotype of PepMV-Sp13 and -PS5 mixed infections was mild and did not change significantly when infecting different tomato cultivars or under different environmental conditions in Spain, (ii) PepMV-Sp13 and -PS5 mixed infections provided more efficient protection against two aggressive EU and CH2 isolates than single infections, and (iii) PepMV-Sp13 and -PS5, either in single or in mixed infections, were less variable than other two PepMV isolates occurring naturally in PepMV epidemics in Spain

    Immunotherapeutic maintenance treatment with toll-like receptor 9 agonist lefitolimod in patients with extensive-stage small-cell lung cancer: Results from the exploratory, controlled, randomized, international phase 2 IMPULSE study

    Get PDF
    Background: The immune surveillance reactivator lefitolimod (MGN1703), a DNA-based TLR9 agonist, might foster innate and adaptive immune response and thus improve immune-mediated control of residual cancer disease. The IMPULSE phase 2 study evaluated the efficacy and safety of lefitolimod as maintenance treatment in extensive-stage small-cell lung cancer (ES-SCLC) after objective response to first-line chemotherapy, an indication with a high unmet medical need and stagnant treatment improvement in the last decades. Patients and methods: 103 patients with ES-SCLC and objective tumor response (as per RECIST 1.1) following 4 cycles of platinum-based first-line induction therapy were randomized to receive either lefitolimod maintenance therapy or local standard of care at a ratio of 3:2 until progression or unacceptable toxicity. Results: From 103 patients enrolled, 62 were randomized to lefitolimod, 41 to the control arm. Patient demographics and response patterns to first-line therapy were balanced. Lefitolimod exhibited a favorable safety profile and pharmacodynamic assessment confirmed the mode-of-action showing a clear activation of monocytes and production of interferon-gamma-induced protein 10 (IP-10). While in the ITT population no relevant effect of lefitolimod on progression-free and overall survival (OS) could be observed, two pre-defined patient subgroups indicated promising results, favoring lefitolimod with respect to OS: in patients with a low frequency of activated CD86+ B cells (hazard ratio, HR 0.53, 95%CI 0.26-1.08; n = 38 of 88 analyzed) and in patients with reported chronic obstructive pulmonary disease (COPD) (HR 0.48, 95%CI 0.20-1.17, n = 25 of 103). Conclusions: The IMPULSE study showed no relevant effect of lefitolimod on the main efficacy endpoint OS in the ITT, but (1) the expected pharmacodynamic response to lefitolimod, (2) positive OS efficacy signals in two pre-defined subgroups and (3) a favorable safety profile. These data support further exploration of lefitolimod in SCLC

    An Update on the Intracellular and Intercellular Trafficking of Carmoviruses

    Full text link
    [EN] Despite harboring the smallest genomes among plant RNA viruses, carmoviruses have emerged as an ideal model system for studying essential steps of the viral cycle including intracellular and intercellular trafficking. Two small movement proteins, formerly known as double gene block proteins (DGBp1 and DGBp2), have been involved in the movement throughout the plant of some members of carmovirus genera. DGBp1 RNA-binding capability was indispensable for cell-to-cell movement indicating that viral genomes must interact with DGBp1 to be transported. Further investigation on Melon necrotic spot virus (MNSV) DGBp1 subcellular localization and dynamics also supported this idea as this protein showed an actin-dependent movement along microfilaments and accumulated at the cellular periphery. Regarding DGBp2, subcellular localization studies showed that MNSV and Pelargonium flower break virus DGBp2s were inserted into the endoplasmic reticulum (ER) membrane but only MNSV DGBp2 trafficked to plasmodesmata (PD) via the Golgi apparatus through a COPII-dependent pathway. DGBp2 function is still unknown but its localization at PD was a requisite for an efficient cell-to-cell movement. It is also known that MNSV infection can induce a dramatic reorganization of mitochondria resulting in anomalous organelles containing viral RNAs. These putative viral factories were frequently found associated with the ER near the PD leading to the possibility that MNSV movement and replication could be spatially linked. Here, we update the current knowledge of the plant endomembrane system involvement in carmovirus intra-and intercellular movement and the tentative model proposed for MNSV transport within plant cells.This work was funded by grant BIO2014-54862-R from the Spanish Direccion General de Investigacion Cientifica y Tecnica (DGICYT) and the Prometeo Program GV2014/010 from the Generalitat Valenciana.Navarro Bohigues, JA.; Pallás Benet, V. (2017). An Update on the Intracellular and Intercellular Trafficking of Carmoviruses. Frontiers in Plant Science. 8:1-7. https://doi.org/10.3389/fpls.2017.01801S178Adams, M. J., Lefkowitz, E. J., King, A. M. Q., Harrach, B., Harrison, R. L., Knowles, N. J., … Davison, A. J. (2016). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Archives of Virology, 161(10), 2921-2949. doi:10.1007/s00705-016-2977-6Blake, J. A., Lee, K. W., Morris, T. J., & Elthon, T. E. (2007). Effects of turnip crinkle virus infection on the structure and function of mitochondria and expression of stress proteins in turnips. Physiologia Plantarum, 129(4), 698-706. doi:10.1111/j.1399-3054.2006.00852.xBlanco-Pérez, M., Pérez-Cañamás, M., Ruiz, L., & Hernández, C. (2016). Efficient Translation of Pelargonium line pattern virus RNAs Relies on a TED-Like 3´-Translational Enhancer that Communicates with the Corresponding 5´-Region through a Long-Distance RNA-RNA Interaction. PLOS ONE, 11(4), e0152593. doi:10.1371/journal.pone.0152593Brandizzi, F., Frangne, N., Marc-Martin, S., Hawes, C., Neuhaus, J.-M., & Paris, N. (2002). The Destination for Single-Pass Membrane Proteins Is Influenced Markedly by the Length of the Hydrophobic Domain. The Plant Cell, 14(5), 1077-1092. doi:10.1105/tpc.000620Carrington, J. C., Heaton, L. A., Zuidema, D., Hillman, B. I., & Morris, T. J. (1989). The genome structure of turnip crinkle virus. Virology, 170(1), 219-226. doi:10.1016/0042-6822(89)90369-3Chandra-Shekara, A. C., Navarre, D., Kachroo, A., Kang, H.-G., Klessig, D., & Kachroo, P. (2004). Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. The Plant Journal, 40(5), 647-659. doi:10.1111/j.1365-313x.2004.02241.xCohen, Y., Gisel, A., & Zambryski, P. C. (2000). Cell-to-Cell and Systemic Movement of Recombinant Green Fluorescent Protein-Tagged Turnip Crinkle Viruses. Virology, 273(2), 258-266. doi:10.1006/viro.2000.0441Cohen, Y., Qu, F., Gisel, A., Morris, T. J., & Zambryski, P. C. (2000). Nuclear Localization of Turnip Crinkle Virus Movement Protein p8. Virology, 273(2), 276-285. doi:10.1006/viro.2000.0440Gao, F., Kasprzak, W., Stupina, V. A., Shapiro, B. A., & Simon, A. E. (2012). A Ribosome-Binding, 3′ Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction. Journal of Virology, 86(18), 9828-9842. doi:10.1128/jvi.00677-12García-Castillo, S., Sánchez-Pina, M. A., & Pallás, V. (2003). Spatio-temporal analysis of the RNAs, coat and movement (p7) proteins of Carnation mottle virus in Chenopodium quinoa plants. Journal of General Virology, 84(3), 745-749. doi:10.1099/vir.0.18715-0Genovés, A., Navarro, J. A., & Pallás, V. (2006). Functional analysis of the five melon necrotic spot virus genome-encoded proteins. Journal of General Virology, 87(8), 2371-2380. doi:10.1099/vir.0.81793-0Genovés, A., Navarro, J. A., & Pallás, V. (2009). A self-interacting carmovirus movement protein plays a role in binding of viral RNA during the cell-to-cell movement and shows an actin cytoskeleton dependent location in cell periphery. Virology, 395(1), 133-142. doi:10.1016/j.virol.2009.08.042Genoves, A., Pallas, V., & Navarro, J. A. (2011). Contribution of Topology Determinants of a Viral Movement Protein to Its Membrane Association, Intracellular Traffic, and Viral Cell-to-Cell Movement. Journal of Virology, 85(15), 7797-7809. doi:10.1128/jvi.02465-10Gómez-Aix, C., García-García, M., Aranda, M. A., & Sánchez-Pina, M. A. (2015). Melon necrotic spot virus Replication Occurs in Association with Altered Mitochondria. Molecular Plant-Microbe Interactions®, 28(4), 387-397. doi:10.1094/mpmi-09-14-0274-rGrangeon, R., Jiang, J., & Laliberté, J.-F. (2012). Host endomembrane recruitment for plant RNA virus replication. Current Opinion in Virology, 2(6), 683-690. doi:10.1016/j.coviro.2012.10.003Grangeon, R., Jiang, J., Wan, J., Agbeci, M., Zheng, H., & Laliberté, J.-F. (2013). 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00351Guilley, H., Carrington, J. C., Balàzs, E., Jonard, G., Richards, K., & Morris, T. J. (1985). Nucleotide sequence and genome organization of carnation mottle virus RNA. Nucleic Acids Research, 13(18), 6663-6677. doi:10.1093/nar/13.18.6663Hacker, D. L., Petty, I. T. D., Wei, N., & Morris, T. J. (1992). Turnip crinkle virus genes required for RNA replication and virus movement. Virology, 186(1), 1-8. doi:10.1016/0042-6822(92)90055-tHerrera-Vásquez, J. A., Córdoba-Sellés, M. C., Cebrián, M. C., Alfaro-Fernández, A., & Jordá, C. (2009). Seed transmission ofMelon necrotic spot virusand efficacy of seed-disinfection treatments. Plant Pathology, 58(3), 436-442. doi:10.1111/j.1365-3059.2008.01985.xJiang, J., & Laliberté, J.-F. (2016). Membrane Association for Plant Virus Replication and Movement. Current Research Topics in Plant Virology, 67-85. doi:10.1007/978-3-319-32919-2_3Kaido, M., Tsuno, Y., Mise, K., & Okuno, T. (2009). Endoplasmic reticulum targeting of the Red clover necrotic mosaic virus movement protein is associated with the replication of viral RNA1 but not that of RNA2. Virology, 395(2), 232-242. doi:10.1016/j.virol.2009.09.022Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences, 101(16), 6291-6296. doi:10.1073/pnas.0401221101Krczal, G. (1995). Transmission of Pelargonium Flower Break Virus (PFBV) in Irrigation Systems and by Thrips. Plant Disease, 79(2), 163. doi:10.1094/pd-79-0163Lerch-Bader, M., Lundin, C., Kim, H., Nilsson, I., & von Heijne, G. (2008). Contribution of positively charged flanking residues to the insertion of transmembrane helices into the endoplasmic reticulum. Proceedings of the National Academy of Sciences, 105(11), 4127-4132. doi:10.1073/pnas.0711580105Lesemann, D.-E., & Adam, G. (1994). ELECTRON MICROSCOPICAL AND SEROLOGICAL STUDIES ON FOUR ISOMETRICAL PELARGONIUM VIRUSES. Acta Horticulturae, (377), 41-54. doi:10.17660/actahortic.1994.377.3Li, W., Qu, F., & Morris, T. J. (1998). Cell-to-Cell Movement of Turnip Crinkle Virus Is Controlled by Two Small Open Reading Frames That Functionin trans. Virology, 244(2), 405-416. doi:10.1006/viro.1998.9125Liu, C., & Nelson, R. S. (2013). The cell biology of Tobacco mosaic virus replication and movement. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00012Marcos, J. F., Vilar, M., Pérez-Payá, E., & Pallás, V. (1999). In VivoDetection, RNA-Binding Properties and Characterization of the RNA-Binding Domain of the p7 Putative Movement Protein from Carnation Mottle Carmovirus (CarMV). Virology, 255(2), 354-365. doi:10.1006/viro.1998.9596Martínez-Gil, L., Johnson, A. E., & Mingarro, I. (2010). Membrane Insertion and Biogenesis of the Turnip Crinkle Virus p9 Movement Protein. Journal of Virology, 84(11), 5520-5527. doi:10.1128/jvi.00125-10Martínez-Gil, L., Saurí, A., Vilar, M., Pallás, V., & Mingarro, I. (2007). Membrane insertion and topology of the p7B movement protein of Melon Necrotic Spot Virus (MNSV). Virology, 367(2), 348-357. doi:10.1016/j.virol.2007.06.006Martínez-Turiño, S., & Hernández, C. (2009). Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. Journal of General Virology, 90(2), 519-525. doi:10.1099/vir.0.006098-0Martínez-Turiño, S., & Hernández, C. (2011). A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology, 413(2), 310-319. doi:10.1016/j.virol.2011.03.001Martínez-Turiño, S., & Hernández, C. (2012). Analysis of the subcellular targeting of the smaller replicase protein of Pelargonium flower break virus. Virus Research, 163(2), 580-591. doi:10.1016/j.virusres.2011.12.011Mello, A. F. S., Clark, A. J., & Perry, K. L. (2009). Capsid protein of cowpea chlorotic mottle virus is a determinant for vector transmission by a beetle. Journal of General Virology, 91(2), 545-551. doi:10.1099/vir.0.016402-0Miras, M., Sempere, R. N., Kraft, J. J., Miller, W. A., Aranda, M. A., & Truniger, V. (2013). Interfamilial recombination between viruses led to acquisition of a novel translation-enhancing RNA element that allows resistance breaking. New Phytologist, 202(1), 233-246. doi:10.1111/nph.12650Mochizuki, T., Hirai, K., Kanda, A., Ohnishi, J., Ohki, T., & Tsuda, S. (2009). Induction of necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29 by its second transmembrane domain. Virology, 390(2), 239-249. doi:10.1016/j.virol.2009.05.012Morozov, S. Y., & Solovyev, A. G. (2003). Triple gene block: modular design of a multifunctional machine for plant virus movement. Journal of General Virology, 84(6), 1351-1366. doi:10.1099/vir.0.18922-0Mueller, S. J., & Reski, R. (2015). Mitochondrial Dynamics and the ER: The Plant Perspective. Frontiers in Cell and Developmental Biology, 3. doi:10.3389/fcell.2015.00078Navarro, J. A., Genovés, A., Climent, J., Saurí, A., Martínez-Gil, L., Mingarro, I., & Pallás, V. (2006). RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology, 356(1-2), 57-67. doi:10.1016/j.virol.2006.07.040Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., … Bendahmane, A. (2006). AneIF4Eallele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. The Plant Journal, 48(3), 452-462. doi:10.1111/j.1365-313x.2006.02885.xOhki, T., Akita, F., Mochizuki, T., Kanda, A., Sasaya, T., & Tsuda, S. (2010). The protruding domain of the coat protein of Melon necrotic spot virus is involved in compatibility with and transmission by the fungal vector Olpidium bornovanus. Virology, 402(1), 129-134. doi:10.1016/j.virol.2010.03.020Panavas, T., Hawkins, C. M., Panaviene, Z., & Nagy, P. D. (2005). The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology, 338(1), 81-95. doi:10.1016/j.virol.2005.04.025Powers, J. G., Sit, T. L., Qu, F., Morris, T. J., Kim, K.-H., & Lommel, S. A. (2008). A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement. Molecular Plant-Microbe Interactions®, 21(7), 879-890. doi:10.1094/mpmi-21-7-0879Qu, F., Ren, T., & Morris, T. J. (2003). The Coat Protein of Turnip Crinkle Virus Suppresses Posttranscriptional Gene Silencing at an Early Initiation Step. Journal of Virology, 77(1), 511-522. doi:10.1128/jvi.77.1.511-522.2003Riviere, C. J., & Rochon, D. M. (1990). Nucleotide sequence and genomic organization of melon necrotic spot virus. Journal of General Virology, 71(9), 1887-1896. doi:10.1099/0022-1317-71-9-1887Romero-Brey, I., & Bartenschlager, R. (2014). Membranous Replication Factories Induced by Plus-Strand RNA Viruses. Viruses, 6(7), 2826-2857. doi:10.3390/v6072826Russo, M., & Martelli, G. P. (1982). Ultrastructure of turnip crinkle- and saguaro cactus virus-infected tissues. Virology, 118(1), 109-116. doi:10.1016/0042-6822(82)90324-5Saurí, A., Saksena, S., Salgado, J., Johnson, A. E., & Mingarro, I. (2005). Double-spanning Plant Viral Movement Protein Integration into the Endoplasmic Reticulum Membrane Is Signal Recognition Particle-dependent, Translocon-mediated, and Concerted. Journal of Biological Chemistry, 280(27), 25907-25912. doi:10.1074/jbc.m412476200Serra-Soriano, M., Antonio Navarro, J., & Pallás, V. (2016). Dissecting the multifunctional role of the N-terminal domain of theMelon necrotic spot viruscoat protein in RNA packaging, viral movement and interference with antiviral plant defence. Molecular Plant Pathology, 18(6), 837-849. doi:10.1111/mpp.12448Serra-Soriano, M., Pallás, V., & Navarro, J. A. (2014). A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. The Plant Journal, 77(6), 863-879. doi:10.1111/tpj.12435Shi, Y., Ryabov, E. V., van Wezel, R., Li, C., Jin, M., Wang, W., … Hong, Y. (2009). Suppression of local RNA silencing is not sufficient to promote cell-to-cell movement ofTurnip crinkle virusinNicotiana benthamiana. Plant Signaling & Behavior, 4(1), 15-22. doi:10.4161/psb.4.1.7573Teakle, D. S. (1980). FUNGI. Vectors of Plant Pathogens, 417-438. doi:10.1016/b978-0-12-326450-3.50021-8Thomas, C. L., Leh, V., Lederer, C., & Maule, A. J. (2003). Turnip crinkle virus coat protein mediates suppression of RNA silencing in nicotiana benthamiana. Virology, 306(1), 33-41. doi:10.1016/s0042-6822(02)00018-1Tilsner, J., Linnik, O., Louveaux, M., Roberts, I. M., Chapman, S. N., & Oparka, K. J. (2013). Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. Journal of Cell Biology, 201(7), 981-995. doi:10.1083/jcb.201304003Verchot, J. (2011). Wrapping membranes around plant virus infection. Current Opinion in Virology, 1(5), 388-395. doi:10.1016/j.coviro.2011.09.009Vilar, M., Esteve, V., Pallás, V., Marcos, J. F., & Pérez-Payá, E. (2001). Structural Properties of Carnation Mottle Virus p7 Movement Protein and Its RNA-binding Domain. Journal of Biological Chemistry, 276(21), 18122-18129. doi:10.1074/jbc.m100706200Vilar, M., Saurí, A., Marcos, J. F., Mingarro, I., & Pérez-Payá, E. (2005). Transient Structural Ordering of the RNA-Binding Domain of Carnation Mottle Virus p7 Movement Protein Modulates Nucleic Acid Binding. ChemBioChem, 6(8), 1391-1396. doi:10.1002/cbic.200400451Vilar, M., Saurı́, A., Monné, M., Marcos, J. F., von Heijne, G., Pérez-Payá, E., & Mingarro, I. (2002). Insertion and Topology of a Plant Viral Movement Protein in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 277(26), 23447-23452. doi:10.1074/jbc.m202935200Von Heijne, G. (2007). Formation of Transmembrane Helices In Vivo—Is Hydrophobicity All that Matters? Journal of General Physiology, 129(5), 353-356. doi:10.1085/jgp.200709740Wada, Y., Tanaka, H., Yamashita, E., Kubo, C., Ichiki-Uehara, T., Nakazono-Nagaoka, E., … Tsukihara, T. (2007). The structure of melon necrotic spot virus determined at 2.8 Å resolution. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 64(1), 8-13. doi:10.1107/s1744309107066481Wobbe, K. K., Akgoz, M., Dempsey, D. A., & Klessig, D. F. (1998). A Single Amino Acid Change in Turnip Crinkle Virus Movement Protein p8 Affects RNA Binding and Virulence onArabidopsis thaliana. Journal of Virology, 72(7), 6247-6250. doi:10.1128/jvi.72.7.6247-6250.1998Zhang, X., Zhang, X., Singh, J., Li, D., & Qu, F. (2012). Temperature-Dependent Survival of Turnip Crinkle Virus-Infected Arabidopsis Plants Relies on an RNA Silencing-Based Defense That Requires DCL2, AGO2, and HEN1. Journal of Virology, 86(12), 6847-6854. doi:10.1128/jvi.00497-12Zhou, Y., Ryabov, E., Zhang, X., & Hong, Y. (2008). Influence of viral genes on the cell-to-cell spread of RNA silencing. Journal of Experimental Botany, 59(10), 2803-2813. doi:10.1093/jxb/ern14

    Interacción MNSV-planta de melón : una aproximación transcriptómica y celular

    No full text
    El Virus de las manchas necróticas del melón (Melon necrotic spot virus, MNSV; género Carmovirus; Familia Tombusviridae) es un virus de ARN de sentido positivo endémico en cultivos de melón. Este virus ha sido empleado como modelo de estudio de aspectos relacionados con la superación de resistencias recesivas, la traducción de ARNs virales carentes de estructuras cap o el movimiento intercelular. Sin embargo, se sabe poco acerca de las respuestas que la infección por este virus induce en las plantas o los genes alterados como consecuencia del desarrollo de su ciclo viral en su huésped natural, el melón. Así mismo, se desconocen los lugares, dentro de la célula vegetal, donde este virus lleva a cabo su replicación viral. Todos estos procesos podrían aportar conocimiento sobre los genes necesarios en la interacción planta-virus que permiten el establecimiento de una infección satisfactoria por parte del virus, o los factores necesarios para la puesta en marcha de una respuesta de defensa eficaz para contrarrestar la infección y que podrían ser utilizados en estrategias antivirales. Con el objetivo de ahondar en el conocimiento de la interacción MNSV-melón, esta tesis ha sido estructurada en dos capítulos. En el primer capítulo, utilizando los microarrays como herramienta principal de análisis, se ha llevado a cabo un estudio de las alteraciones transcriptómicas inducidas por MNSV en melón, con especial énfasis en aquellos cambios asociados con: (i) una región no codificante del genoma del virus, (ii) diferentes cultivares de melón (iii) diferentes tejidos de la planta, (iv) y con el desarrollo de infecciones de tipo local o sistémico. Los resultados obtenidos han permitido identificar la desregulación específica de dos grupos de genes asociados con una región no traducible del genoma viral, así como genes que responden de forma específica de cultivar. La comparación entre tejidos ha mostrado una respuesta cuantitativa diferente entre hoja y cotiledón, pero cualitativamente muy similar, aportando validez a los resultados obtenidos en cotiledón. Así mismo, una aproximación tradicional al estudio de la posible activación de una respuesta sistémica adquirida por parte de la planta, ha descartado la activación de la misma. Finalmente, la comparación entre estos resultados con los obtenidos en trabajos previos para otros virus, ha permitido identificar un sólo gen compartido por los tres virus analizados, que podría ser importante en las infecciones virales al menos en melón. Por otro lado, estos análisis han puesto de manifiesto la importancia de utilizar diferentes tiempos de muestreo a la hora de realizar comparaciones entre los cambios transcriptómicos inducidos por diferentes virus. En el segundo capítulo, se ha llevado a cabo el análisis tisular de las lesiones inducidas por MNSV para delimitar las regiones de interés donde realizar los análisis ultraestructurales. Este análisis identificó una región idónea para tales efectos. El estudio ultraestructural mediante microscopía electrónica de transmisión de la región identificada como Z2, ha puesto de manifiesto la existencia de grandes orgánulos originados como consecuencia de la infección por MNSV. Estos orgánulos han sido identificados como mitocondrias modificadas estructuralmente y representan los lugares donde el virus lleva a cabo su replicación ya que, a través de experimentos de hibridación in situ e inmunocitoquímica, se han localizado los ARNs virales, la proteína de la cápsida viral (CP) así como el dsRNA (intermediario de replicación) en estos orgánulos. La reconstrucción tridimensional de las mitocondrias modificadas mostró la presencia de grandes dilataciones internas, interconectadas entre ellas y con el citoplasma circundante a través de poros y/o estructuras complejas así como su conexión con cuerpos lipídicos. Así mismo, se llevó a cabo el estudio de la implicación de la proteína p29 de MNSV en la localización y generación de los sitios de replicación de MNSV. Para ello se generaron construcciones de la proteína p29 fusionada a GFP que fueron localizadas mediante microscopía laser confocal en mitocondrias. El análisis de la ultraestructura de las células que expresaron la proteína de fusión p29-GFP y su localización por inmunocitoquímica identificó la presencia de esta proteína en mitocondrias, así como la inducción de modificaciones estructurales en estos orgánulos muy semejantes a las inducidas por el virus. SUMMARY Melon necrotic spot virus (MNSV) (genus Carmovirus, family Tombusviridae) is a single-stranded, positive-sense RNA virus endemic of cucurbit crops worldwide. This virus has become an experimental model for the analysis of cell-to-cell virus movement and translation of uncapped viral RNAs, whereas little is known about its replication or the transcriptome changes induced in melon plant by the virus during the viral cycle and in response to the infection. So far it is unknown the cellular compartment in which this virus carries out its viral replication. Addressing all these processes could provide information about genes involved in the plant-virus interaction that lead to a successful viral infection and the cellular factors involved in the defense response to counteract the infection. This knowledge may be used in future antiviral strategies. To clarify all these questions about MNSV-melon interaction this thesis has been structured into two chapters. The first chapter is focused on transcriptomic alterations induced by MNSV in melon plants, with special emphasis on those changes associated with: (i) a non-coding region of the genome virus, (ii) different melon cultivars, (iii) different plant tissues, and, (iv) development of local or systemic infections. Microarray analyses have led to identify a specific deregulation of two groups of genes associated with an untranslated region of the viral genome, and also several sets of genes that respond specifically in each cultivar. The comparison between tissues has shown a different quantitative response between leaf and cotyledon, but qualitatively similar, providing validity to the results obtained in cotyledon. Also, a traditional approach to the study of the putative activation of a systemic acquired response from the plant has dismissed the activation of such response. Finally, the comparison of these results with those obtained in previous work for other viruses, has identified one gene shared by all the three viruses tested. This gene could play a key role in melon viralinfection. On the other hand, these results have shown the need of using different sampling times when comparing transcriptome changes induced by different viruses. In the second chapter, an histological analysis of the MNSV infected tissues was performed in order to define the most adequate region where to focuses the ultrastructural analysis. This analysis identified an ideal region for this purpose. The ultrastructural study by transmission electron microscopy of the region identified as Z2, has revealed the existence of large organelles originated as a result of MNSV infection. Immunolocalization of the glycine decarboxylase complex (GDC) P protein in these organelles confirmed their mitochondrial origin. In situ hybridization and immunolocalization experiments showed the specific localization of positive-sense viral RNA, capsid protein (CP), and double-stranded (ds)RNA (a replication intermediate) in these organelles meaning that replication of the virus takes place in association with them. The three-dimensional reconstructions of the altered mitochondria showed the presence of large, interconnected, internal dilations which appeared to be linked to the outside cytoplasmic environment through pores and/or complex structures, and with lipid bodies. Transient expression of MNSV p29 revealed that its specific target is mitochondria. Our data document the extensive reorganization of host mitochondria induced by MNSV, which provides a protected environment to viral replication, and show that the MNSV p29 protein is the primary determinant of this effect in the host

    In situ hybridization for the localization of two pepino mosaic virus isolates in mixed infections

    No full text
    In situ hybridization (ISH) is an informative and relatively accessible technique for the localization of viral genomes in plant tissue and cells. However, simultaneous visualization of related plant viruses in mixed infections may be limited by the nucleotide similarity in the genomes and the single chromogenic detection over the same sample preparation. To address this issue, we used two Pepino mosaic virus isolates and performed ISH over consecutive serial cross-sections of paraffin-embedded leaf samples of single and mixed infected Nicotiana benthamiana plants. Moreover, the probe design was optimized to reduce cross-hybridisation, and co-localization was based on the overlapping of consecutive cross-sections from mixed infected leaves; thus, our results showed that both Pepino mosaic virus isolates co-localized in the same leaf tissue. In turn, both isolates were localized in the cytoplasm of the same cells. These results provide valuable information for studying mixed infections in plants by using a simple ISH procedure that is accessible to any pathology laboratory.P.G. and M.A.A. acknowledge funding from MINECO (grants AGL2014-59556-R and PCIN-2017-055, the latter within the ERANET-ARIMNet2 (ref. 302) program), and C.A. was supported by funding from the Ministry of Industry, Economy and Competitiveness (MINECO, Spain) within the PhD programme grant (FPU16/02569).Peer reviewe

    Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations

    No full text
    - Background: Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumis melo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon have been extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes for breeding new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3'-untranslated regions.- Results:Melon plant tissues from the cultivars Tendral or Planters Jumbo were locally infected with either MNSV-Mα5 or MNSV-Mα5/3'264 and analysed in a time-course experiment. Principal component and hierarchical clustering analyses identified treatment (healthy vs. infected) and sampling date (3 vs. 5 dpi) as the primary and secondary variables, respectively. Out of 7566 and 7074 genes deregulated by MNSV-Mα5 and MNSV-Mα5/3'264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Mα5/3'264 specifically deregulated 2925 and 1618 genes in Tendral and Planters Jumbo, respectively. The GO categories that were significantly affected were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed for the identification of two groups that were specifically deregulated by MNSV-Mα5/3'264 with respect to MNSV-Mα5 in Tendral, and one group that was antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Mα5/3'264 infection. Genes in these three groups belonged to diverse functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Mα5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only gene that was deregulated by all three viruses, with infection dynamics correlating with the amplitude of transcriptome remodeling. - Conclusions: Strain-specific changes, as well as cultivar-specific changes, were identified by profiling the transcriptomes of plants from two melon cultivars infected with two MNSV strains. No obvious regulatory features shared among deregulated genes have been identified, pointing toward regulation through differential functional pathways
    corecore