12 research outputs found

    The impact of wave number selection and spin-up time in spectral nudging

    Get PDF
    The present work studies two relevant parameters from spectral nudging. First, the cut-off wave number, which effectively separates the nudged scales from the free running ones. And, second, the spin-up time, which determines how much time is needed to reach a balance between the nudging force and the model internal climate. Our results show that the optimal cut-off wave number coincides with the Rossby Radius of Deformation, both in mid and tropical latitudes, suggesting that this parameter is related with the dynamic characteristics of the modelled area, and not with features of the experiment design. The optimal spin-up time is found to be 24/48h for mid latitudes and 72/96h for tropical latitudes. We also study the suitability of spectral nudging as an initialisation technique. Our results indicate that it is beneficial to use some nudging technique at the beginning of the simulation, but we have not found relevant differences between grid nudging and spectral nudging

    Uso del modelo roms (Sistema de Modelado Oceánico Regional) para mejorar la predicción de la temperatura de la superficie del agua de mar del modelo mercator

    Get PDF
    Global models are generally capable of reproducing the observed trends in the globally averaged sea surface temperature (SST). However, the global models do not perform as well on regional scales. Here, we present an ocean forecast system based on the Regional Ocean Modelling System (ROMS), the boundary conditions come from the MERCATOR ocean system for the North Atlantic (1/6° horizontal resolution). The system covers the region of the northwestern Iberian Peninsula with a horizontal resolution of 1/36°, forced with the Weather Research and Forecasting Model (WRF) and the Soil Water Assessment Tool (SWAT). The ocean model results from the regional ocean model are validated using real-time SST and observations from the MeteoGalicia, INTECMAR and Puertos Del Estado real-time observational networks. The validation results reveal that over a one-year period the mean absolute error of the SST is less than 1°C, and several sources of measured data reveal that the errors decrease near the coast. This improvement is related to the inclusion of local forcing not present in the boundary condition model.Los modelos globales son capaces de reproducir con suficiente fiabilidad las tendencias observadas a gran escala en la SST (temperatura la superficie del agua del mar, por sus siglas en inglés). Sin embargo estos modelos no muestran tanta precisión en escalas locales. En este trabajo se presenta un sistema de predicción oceánico basado en el modelo regional oceánico ROMS anidado al modelo oceánico MERCATOR (resolución 1/6°) para el Atlántico Norte. El sistema se extiende a lo largo del noroeste de la Península Ibérica con una resolución horizontal de 1/36° y forzado con los modelos WRF para las condiciones atmosféricas y el modelo SWAT para los caudales de los ríos. El sistema de predicción se validó utilizando SST de OSTIA y observaciones provenientes de la redes de medición en tiempo real de Puertos del Estado, Intecmar y Meteogalicia. Los resultados muestran que para el periodo de un año estudiado el error medio absoluto de la SST es menor de 1°C, y las comparaciones contra observaciones puntuales muestran que este error es incluso menor cerca de costa. Los autores estiman que este comportamiento se debe a la inclusión de diferentes forzamientos locales no presentes en el modelo de condiciones de contorno

    Apparent colossal dielectric constants in nanoporous Metal Organic Frameworks

    Get PDF
    [Abstract] In this work, we show that the hybrid material Co2(1,4-bdc)2(dabco)•[4DMF•1H2O], shows an apparent colossal dielectric constant at room temperature (r5000 at 300 K for =100 Hz). Nevertheless, such response does not imply colossal polarizability processes, as its dielectric constant is not purely intrinsic, but is greatly enhanced by the activation of extrinsic dielectric effects close to room temperature associated to the diffusion of numerous guest molecules through the channels. If such extrinsic contributions are eliminated or reduced, the values of the dielectric constant turn to be much smaller, as observed in the closely related Co2(1,4-bdc-NH2)2(dabco)•[7/2DMF•1H2O], Co2(1,4-ndc)2(dabco) •[3DMF•2H2O] and Ni2(1,4-bdc)2(dabco)•[3DMF•1/2H2O] compounds. Therefore, we warn about the imperious necessity of distinguishing between intrinsic and extrinsic effects in electrically inhomogenous MOF materials that display a certain conductivity in order to adequately interpret their dielectric behaviorMinisterio de Economía y Competitividad; MAT2010-21342-C02-01Xunta de Galicia; PGIDIT10PXB103272P

    Atypical magnetic behavior in the incommensurate [CH3NH3][Ni(HCOO)3][CH_3NH_3][Ni(HCOO)_3] hybrid perovskite

    Full text link
    A plethora of temperature induced phase transitions have been observed in [CH3NH3][M(HCOO)3][CH_3NH_3][M(HCOO)_3] compounds, where M is Co(II) or Ni(II). Among them, the nickel compound exhibits a combination of magnetic and nuclear incommensurabil-ity below N\'eel temperature. Despite the fact that the zero-field behavior has been previously addressed, here we study in depth the macroscopic magnetic behavior of this compound to unveil the origin of the atypical magnetic response found in it and in its parent family of formate perovskites. In particular, they show a puzzling magnetization reversal in the curves measured starting from low temperatures, after cooling under zero field. The first atypical phenomena is the im-possibility of reaching zero magnetization, even by nullifying the applied external field and even compensating it for the influence earth's magnetic field. Relatively large magnetic fields are needed to switch the magnetization from negative to positive values or vice versa, which is compatible with a soft-ferromagnetic system. The atypical path found in its first magnetization curve and hysteresis loop at low temperatures is the most noticeable feature. The magnetization curve switches from more than 1200 Oe from the first magnetization loop to the subsequent magnetization loops. A feature that cannot be explained using a model based on unbalanced pair of domains. As a result, we decipher this behavior in light of the incommensurate structure of this material. We propose, in particular, that the applied magnetic field induces a mag-netic phase transition from a magnetically incommensurate structure to a magnetically commensurate structure.Comment: 9 pages, 7 figures, 1 tabl

    Atypical Magnetic Behavior in the Incommensurate (CH3NH3)[Ni(HCOO)3] Hybrid Perovskite

    Get PDF
    A plethora of temperature-induced phase transitions have been observed in (CH3NH3)[M(HCOO)3] compounds, where M is Co(II) or Ni(II). Among them, the nickel compound exhibits a combination of magnetic and nuclear incommensurability below Néel temperature. Despite the fact that the zero-field behavior has been previously addressed, here we study in depth the macroscopic magnetic behavior of this compound to unveil the origin of the atypical magnetic response found in it and in its parent family of formate perovskites. In particular, they show a puzzling magnetization reversal in the curves measured starting from low temperatures, after cooling under zero field. The first atypical phenomenon is the impossibility of reaching zero magnetization, even by nullifying the applied external field and even compensating it for the influence of the Earth’s magnetic field. Relatively large magnetic fields are needed to switch the magnetization from negative to positive values or vice versa, which is compatible with a soft ferromagnetic system. The atypical path found in its first magnetization curve and hysteresis loop at low temperatures is the most noticeable feature. The magnetization curve switches from more than 1200 Oe from the first magnetization loop to the subsequent magnetization loops. A feature that cannot be explained using a model based on unbalanced pair of domains. As a result, we decipher this behavior in light of the incommensurate structure of this material. We propose, in particular, that the applied magnetic field induces a magnetic phase transition from a magnetically incommensurate structure to a magnetically modulated collinear structureThe authors thank financial support from the Ministerio de Economía y Competitividad MINECO and EU-FEDER (projects MAT2017-86453-R and PDC 2021-121076-I00). The authors are grateful to Dra. Ana Arauzo at Servicio de Medidas Físicas of the Universidad de Zaragoza for heat capacity data. O.F. acknowledges the Spanish Ministry of Universities (UNI/551/2021) and the European Union through the Funds Next GenerationS

    Coexistence of magnetic and electrical order in the new perovskite-like (C3N2H5)[Mn(HCOO)3] formate

    Get PDF
    This is the accepted manuscript of the following article: Pato-Doldán, B., Gómez-Aguirre, L., Bermúdez-García, J., Sánchez-Andújar, M., Fondado, A., & Mira, J. et al. (2013). Coexistence of magnetic and electrical order in the new perovskite-like (C3N2H5)[Mn(HCOO)3] formate. RSC Advances, 3(44), 22404. doi: 10.1039/c3ra43165gIn this work we further the structural characterization of the recently discovered (C3N2H5)[Mn(HCOO)3] metal–organic framework with perovskite-like structure, and we present its magnetic and dielectric properties up to 350 K. At low temperature, the C3N2H5+ imidazolium cations, that sit oblique within the cavities of the [Mn(HCOO)3]− framework structure, show a cooperative order resulting in an antiparallel arrangement of their electrical dipole moments. Very interestingly, it is only above 220 K that thermal energy seems to be able to break this antiferroelectric order, resulting in a linear increase of its dielectric constant with temperature. In addition, this Mn(II) compound is antiferromagnetic below TN = 9 K, with a slightly non-collinear arrangement of its magnetic moments, yielding to a weak ferromagnetism. Therefore, this is a new multiferroic material which exhibits coexistence of magnetic and electric orderingThe authors are grateful for financial support from Ministerio de Economía y Competitividad MINECO (Spain) under project FEDER MAT2010-21342-C02-01 and from Xunta de Galicia under project PGIDIT10PXB103272PR. B.P.-D. also wants to thank MICINN for a FPI fellowshipS

    Magnetic transitions and isotropic versus anisotropic magnetic behaviour of [CH3NH3][M(HCOO)3] M = Mn2+, Co2+, Ni2+, Cu2+ metal–organic perovskites

    Get PDF
    Here we present an in-depth study of the magnetic properties of a family of metal–organic perovskites ABX3, [CH3NH3][M(HCOO)3] in which A = CH3NH3+ is the methylammonium cation, B = M is a divalent metal cation (Mn2+, Co2+, Ni2+ or Cu2+), and X is the formate anion (HCOO−). The magnetic properties have been measured on powdered samples and along the different orientations of mm-sized single crystals. They display spin-canted weak ferromagnetism with Néel temperatures of 8.0 K (Mn2+), 15.7 K (Co2+) and 34 K (Ni2+), which are inversely proportional to the ionic radii of the metal cations. The Cu2+ member displays low-dimensional magnetism as a result of orbital ordering of the Cu2+ d orbitals originating from a Jahn–Teller distortion. Pulsed-field magnetization experiments (fields of up to 60 T at temperatures down to 0.6 K) show that Mn2+, Co2+ and Ni2+ formates display cation-characteristic spin flop transitions. A saturation magnetization value of 5 μB (at 12.5 T) was observed for Mn2+, meanwhile the Co2+ formate shows an orientation dependent quasi saturation (5.1 μB at 21 T along [101] vs. 5.8 μB at 26 T along [010]). The different isotropic/anisotropic behaviour can be explained by the orbital contribution to the magnetic responseThe Spanish authors are grateful for financial support from Ministerio de Economía y Competitividad (MINECO) (Spain) and EU under the project ENE2014-56237-C4-4-R, and Xunta de Galicia under the project GRC2014/042. L. C. G.-A. acknowledges UDC for a predoctoral fellowship and Fundación Barrié for the research stay grant at LANL. Work at LANL, A. P. H. and B. P.-D.'s visit to LANL were funded by the Laboratory Directed Research and Development program at LANL. The NHMFL pulsed-field facility is funded by the U.S. National Science Foundation through Cooperative Grant No. DMR-1157490, the State of Florida, and the U.S. Department of EnergyS

    Geometric Frustration on the Trillium Lattice in a Magnetic Metal-Organic Framework

    Get PDF
    In the dense metal-organic framework Na[Mn(HCOO)3], Mn2+ ions (S = 525\over2) occupy the nodes of a ‘trillium’ net. We show that the system is strongly magnetically frustrated: the Neel transition is suppressed well ´ below the characteristic magnetic interaction strength; short-range magnetic order persists far above the Neel ´ temperature; and the magnetic susceptibility exhibits a pseudo-plateau at 131\over3-saturation magnetisation. A simple model of nearest-neighbour Heisenberg antiferromagnetic and dipolar interactions accounts quantitatively for all observations, including an unusual 2-k magnetic ground-state. We show that the relative strength of dipolar interactions is crucial to selecting this particular ground-state. Geometric frustration within the classical spin liquid regime gives rise to a large magnetocaloric response at low applied fields that is degraded in powder samples as a consequence of the anisotropy of dipolar interactions

    Mobilitzacions socials i esquerra radical : Actes del II Congrés Les altres protagonistes de la Transició Barcelona, 11 a 13 d'octubre de 2019

    Get PDF

    The Met Office Operational Soil Moisture Analysis System

    No full text
    In this study, the current Met Office operational land surface data assimilation system used to produce soil moisture analyses is presented. The main aim of including Land Surface Data Assimilation (LSDA) in both the global and regional systems is to improve forecasts of surface air temperature and humidity. Results from trials assimilating pseudo-observations of 1.5 m air temperature and specific humidity and satellite-derived soil wetness (ASCAT) observations are analysed. The pre-processing of all the observations is described, including the definition and construction of the pseudo-observations. The benefits of using both observations together to produce improved forecasts of surface air temperature and humidity are outlined both in the winter and summer seasons. The benefits of using active LSDA are quantified by the root mean squared error, which is computed using both surface observations and European Centre for Medium-Range Weather Forecasts (ECMWF) analyses as truth. For the global model trials, results are presented separately for the Northern (NH) and Southern (SH) hemispheres. When compared against ground-truth, LSDA in winter NH appears neutral, but in the SH it is the assimilation of ASCAT that contributes to approximately a 2% improvement in temperatures at lead times beyond 48 h. In NH summer, the ASCAT soil wetness observations degrade the forecasts against observations by about 1%, but including the screen level pseudo-observations provides a compensating benefit. In contrast, in the SH, the positive effect comes from including the ASCAT soil wetness observations, and when both observations types are assimilated there is a compensating effect. Finally, we demonstrate substantial improvements to hydrological prediction when using land surface data assimilation in the regional model. Using the Nash-Sutcliffe Efficiency (NSE) metric as an aggregated measure of river flow simulation skill relative to observations, we find that NSE was improved at 106 of 143 UK river gauge locations considered after LSDA was introduced. The number of gauge comparisons where NSE exceeded 0.5 is also increased from 17 to 28 with LSDA
    corecore