8 research outputs found

    Miniaturization in Biocatalysis

    Get PDF
    The use of biocatalysts for the production of both consumer goods and building blocks for chemical synthesis is consistently gaining relevance. A significant contribution for recent advances towards further implementation of enzymes and whole cells is related to the developments in miniature reactor technology and insights into flow behavior. Due to the high level of parallelization and reduced requirements of chemicals, intensive screening of biocatalysts and process variables has become more feasible and reproducibility of the bioconversion processes has been substantially improved. The present work aims to provide an overview of the applications of miniaturized reactors in bioconversion processes, considering multi-well plates and microfluidic devices, update information on the engineering characterization of the hardware used, and present perspective developments in this area of research

    Culture of Spirulina platensis in human urine for biomass production and O(2) evolution

    No full text
    Attempts were made to culture Spirulina platensis in human urine directly to achieve biomass production and O(2) evolution, for potential application to nutrient regeneration and air revitalization in life support system. The culture results showed that Spirulina platensis grows successfully in diluted human urine, and yields maximal biomass at urine dilution ratios of 140~240. Accumulation of lipid and decreasing of protein occurred due to N deficiency. O(2) release rate of Spirulina platensis in diluted human urine was higher than that in Zarrouk medium
    corecore